Cervix ROI Segmentation Using U-NET

Overview

Cervix ROI Segmentation Using U-NET

Overview

This code illustrate how to segment the ROI in cervical images using U-NET.

The ROI here meant to include the: Os + transformation zone + nearby tissue.

The localized ROI is supposed to improve the classification of cervical types, which is the challenge in the Kaggle competition:Intel and MobileODT Cervical Cancer Screening

Compare to other UNET examples, in this one we got:

  • the input images in RGB
  • the input images and masks are augmented in pairs using izip ImageDataGenerators
  • support both Tensorflow and Theano backend, and is using Keras 2

Dependencies:

  • Keras 2
  • Tensorflow or Theano
  • cv2

Other references:


Usage

Data preparation:

  • Download the data from Kaggle.
  • Unzip trian.7z and test.7z into input folder. You may unzip additional_Type_*_v2.7z as well, if you want to segment them, its optional.
  • The input folders should look like this:
    • input/test/
    • input/train/Type_1
    • input/train/Type_2
    • input/train/Type_3
    • input/additional/Type_1 (optional)
    • input/additional/Type_2 (optional)
    • input/additional/Type_3 (optional)
  • Run prepare_data.py
  • Run split_data.py
  • Note:
    • The bbox annotations were converted to Sloth json format and is included under input/*.json.
    • The additional data is NOT used in this training.

Training:

  • Run train.py
  • The best epoch weight file will be save under src/unet_xxxxxx/weights.h5. Note when train.py starts, it will look for previous weight file (if any) and resume from there if weight file exits

Segmentation:

  • Run predict.py
  • The output segmentations are under:
    • input/test_roi/
    • input/train_roi/
    • input/additional_roi/

Configurations:

  • Customize configurations.py

Results

On a GTX 1070, the training of 400 epochs took ~2 hours to complete. The best DICE coefficient is ~0.78.

Apply this model to the 512 unseen test images, the result looks satisfactory in 96% of images.

Sample outputs: img/preview.jpg

Training loss: img/loss_history.jpg

You might also like...
Code for paper
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

Implementation of U-Net and SegNet for building segmentation
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Comments
  • Where is the manual labels?

    Where is the manual labels?

    Thanks for your sharing. After downloading the training and testing dataset, I notice that I cannot find the manual labels. Where are they? Don't we need them?

    Thanks,

    opened by lowkeygit 1
  • Doubt in predict.py

    Doubt in predict.py

    Hi Scotty - Tks for the amazing code, helped me a lot , had a doubt in predict.py . Is it possible to explain what was done in predict.py at a high level, any references to any literature on these methods would be great Thanks -

    opened by ronroc 1
Releases(v1.0)
Owner
Scotty Kwok
Scotty Kwok
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022