KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

Overview

KAPAO (Keypoints and Poses as Objects)

KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as objects within a dense anchor-based detection framework. When not using test-time augmentation (TTA), KAPAO is much faster and more accurate than previous single-stage methods like DEKR and HigherHRNet:

alt text

This repository contains the official PyTorch implementation for the paper:
Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation.

Our code was forked from ultralytics/yolov5 at commit 5487451.

Setup

  1. If you haven't already, install Anaconda or Miniconda.
  2. Create a new conda environment with Python 3.6: $ conda create -n kapao python=3.6.
  3. Activate the environment: $ conda activate kapao
  4. Clone this repo: $ git clone https://github.com/wmcnally/kapao.git
  5. Install the dependencies: $ cd kapao && pip install -r requirements.txt
  6. Download the trained models: $ sh data/scripts/download_models.sh

Inference Demos

Note: FPS calculations includes all processing, including inference, plotting / tracking, image resizing, etc. See demo script arguments for inference options.

Flash Mob Demo

This demo runs inference on a 720p dance video (native frame-rate of 25 FPS).

alt text

To display the inference results in real-time:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --start 188 --end 196 --gif --fps

Squash Demo

This demo runs inference on a 1080p slow motion squash video (native frame-rate of 25 FPS). It uses a simple player tracking algorithm based on the frame-to-frame pose differences.

alt text

To display the inference results in real-time:
$ python demos/squash.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/squash.py --weights kapao_s_coco.pt --start 42 --end 50 --gif --fps

COCO Experiments

Download the COCO dataset: $ sh data/scripts/get_coco_kp.sh

Validation (without TTA)

  • KAPAO-S (63.0 AP): $ python val.py --rect
  • KAPAO-M (68.5 AP): $ python val.py --rect --weights kapao_m_coco.pt
  • KAPAO-L (70.6 AP): $ python val.py --rect --weights kapao_l_coco.pt

Validation (with TTA)

  • KAPAO-S (64.3 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (69.6 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (71.6 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1

Testing

  • KAPAO-S (63.8 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-M (68.8 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-L (70.3 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/s_e500 \
--name train \
--workers 128

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/m_e500 \
--name train \
--workers 128

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/l_e500 \
--name train \
--workers 128

Note: DDP is usually recommended but we found training was less stable for KAPAO-M/L using DDP. We are investigating this issue.

CrowdPose Experiments

  • Install the CrowdPose API to your conda environment:
    $ cd .. && git clone https://github.com/Jeff-sjtu/CrowdPose.git
    $ cd CrowdPose/crowdpose-api/PythonAPI && sh install.sh && cd ../../../kapao
  • Download the CrowdPose dataset: $ sh data/scripts/get_crowdpose.sh

Testing

  • KAPAO-S (63.8 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_s_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (67.1 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_m_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (68.9 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_l_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each. Training was performed on the trainval split with no validation. The test results above were generated using the last model checkpoint.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/cp_s_e300 \
--name train \
--workers 128 \
--noval

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 300 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/cp_m_e300 \
--name train \
--workers 128 \
--noval

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/cp_l_e300 \
--name train \
--workers 128 \
--noval

Acknowledgements

This work was supported in part by Compute Canada, the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, a Microsoft Azure Grant, and an NVIDIA Hardware Grant.

If you find this repo is helpful in your research, please cite our paper:

@article{mcnally2021kapao,
  title={Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={arXiv preprint arXiv:2111.08557},
  year={2021}
}

Please also consider citing our previous works:

@inproceedings{mcnally2021deepdarts,
  title={DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera},
  author={McNally, William and Walters, Pascale and Vats, Kanav and Wong, Alexander and McPhee, John},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4547--4556},
  year={2021}
}

@article{mcnally2021evopose2d,
  title={EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation Using Accelerated Neuroevolution With Weight Transfer},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={IEEE Access},
  volume={9},
  pages={139403--139414},
  year={2021},
  publisher={IEEE}
}
Owner
Will McNally
PhD Candidate
Will McNally
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022