GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

Related tags

Deep LearningGLANet
Overview

GLANet

The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

Framework: image visualization results: image

Getting Started

Installation

This code was tested with Pytorch 1.7.0, CUDA 10.2, and Python 3.7

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/ygjwd12345/GLANet.git
cd GLANet

Datasets

Please refer to the original CUT and CycleGAN to download datasets and learn how to create your own datasets.

    sh ./datasets/download_cyclegan_dataset.sh a2b

Available datasets are: apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, facades, iphone2dslr_flower, ae_photos

    sh ./datasets/download_pix2pix_dataset.sh xx

Available datasets are night2day, edges2handbags, edges2shoes, facades, maps

The Cityscapes dataset can be downloaded from https://cityscapes-dataset.com. After that, use the script ./datasets/prepare_cityscapes_dataset.py to prepare the dataset.

Training

  • Train the single-modal I2I translation model. Please check run.sh. For instance:
python train.py  \
--dataroot ./datasets/summer2winter \
--name summer2winter \
--model sc \
--gpu_ids 0 \
--lambda_spatial 10 \
--lambda_gradient 0 \
--attn_layers 4,7,9 \
--loss_mode cos \
--gan_mode lsgan \
--display_port 8093 \
--direction BtoA \
--patch_size 64

Testing

  • Test the FID score for all training epochs, please also check run.sh. For instance:
python test_fid.py \
--dataroot ./datasets/horse2zebra \
--checkpoints_dir ./checkpoints \
--name horse2zebra \
--gpu_ids 0 \
--model sc \
--num_test 0
  • Test the KID, cityscape score, D&C, LPIPS, please check run_dc_lpips.sh in evaluations folder. For instance:
python PerceptualSimilarity/lpips_2dirs.py -d0 /data2/gyang/TAGAN/results/summer2winter-F64-mixer/test_350/images/real_B -d1 /data2/gyang/TAGAN/results/summer2winter-F64-mixer/test_350/images/fake_B -o ./example_dists.txt --use_gpu
python3 segment.py test -d ./datasets/cityscapes -c 19 --arch drn_d_22 \
    --pretrained ./drn_d_22_cityscapes.pth --phase val --batch-size 1

Acknowledge

Our code is developed based on FSeSim and unguided. We also thank pytorch-fid for FID computation, LPIPS for diversity score, and D&C for density and coverage evaluation.

Owner
stanley
stanley
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022