Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

Related tags

Deep LearningASAP-Net
Overview

ASAP-Net

This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020).

Semantic segmentation result on SemanticKITTI

Overview

We improve spatio-temporal point cloud feature learning with a flexible module called ASAP module considering both attention and structure information across frames, which can be combined with different backbones. Incorporating our module into backbones brings semantic segmentation performance improvements on both Synthia and SemanticKITTI datasets (+3.4 to +15.2 mIoU points with different backbones).

Installation

The Synthia experiments is implemented with TensorFlow and the SemanticKITTI experiments is implemented with PyTorch. We tested the codes under TensorFlow 1.13.1 GPU version, PyTorch 1.1.0, CUDA 10.0, g++ 5.4.0 and Python 3.6.9 on Ubuntu 16.04.12 with TITAN RTX GPU. For SemanticKITTI experiments, you should have a GPU memory of at least 16GB.

Compile TF Operators for Synthia Experiments

We use the implementation in xingyul/meteornet. Please follow the instructions below.

The TF operators are included under Synthia_experiments/tf_ops, you need to compile them first by make under each ops subfolder (check Makefile) or directly use the following commands:

cd Synthia_experiments
sh command_make.sh

Please update arch in the Makefiles for different CUDA Compute Capability that suits your GPU if necessary.

Compile Torch Operators for SemanticKITTI Experiments

We use the PoinNet++ implementation in sshaoshuai/Pointnet2.PyTorch. Use the commands below to build Torch operators.

cd SemanticKITTI_experiments/ASAP-Net_PointNet2/pointnet2
python setup.py install

Experiments on Synthia

The codes for experiments on Synthia is in Synthia_experiments/semantic_seg_synthia. Please refer to Synthia_experiments/semantic_seg_synthia/README.md for more information on data preprocessing and running instructions.

Experiments on SemanticKITTI

The SemanticKITTI_experiments/ImageSet2 folder contains dataset split information. Please put it under your semanticKITTI dataset like Path to semanticKITTI dataset/dataset/sequences.

PointNet++ as Backbone

The codes for framework with PointNet++ as Backbone is in SemanticKITTI_experiments/ASAP-Net_PointNet2. Please refer to SemanticKITTI_experiments/ASAP-Net_PointNet2/README.md for more information on running instructions.

SqueezeSegV2 as Backbone

The codes for framework with SqueezeSegV2 as Backbone is in SemanticKITTI_experiments/ASAP-Net_SqueezeSegV2. Please refer to SemanticKITTI_experiments/ASAP-Net_SqueezeSegV2/README.md for more information on running instructions.

Acknowledgements

Special thanks for open source codes including xingyul/meteornet, sshaoshuai/Pointnet2.PyTorch and PRBonn/lidar-bonnetal.

Citation

Please cite these papers in your publications if it helps your research:

@article{caoasap,
  title={ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation},
  author={Cao, Hanwen and Lu, Yongyi and Lu, Cewu and Pang, Bo and Liu, Gongshen and Yuille, Alan}
  booktitle={British Machine Vision Conference (BMVC)},
  year={2020}
}
Owner
Hanwen Cao
Ph.D. candidate at University of California, San Diego (UCSD)
Hanwen Cao
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022