PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Overview

StructDepth

PyTorch implementation of our ICCV2021 paper:

StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Boying Li*, Yuan Huang*, Zeyu Liu, Danping Zou, Wenxian Yu

(* Equal Contribution) Image text Please consider citing our paper in your publications if the project helps your research.

@inproceedings{structdepth,
  title={StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation},
  author={Li, Boying and Huang, Yuan and Liu, Zeyu and Zou, Danping and Yu, Wenxian},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Getting Started

Installation

The Python and PyTorch versions we use:

python=3.6

pytorch=1.7.1=py3.6_cuda10.1.243_cudnn7.6.3_0

Step1: Creating a virtual environment

conda create -n struct_depth python=3.6
conda activate struct_depth
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

Step2: Download the modified scikit_image package , in which the input parameters of the Felzenswalb algorithm have been changed to accommodate our method.

unzip scikit-image-0.17.2.zip
cd scikit-image-0.17.2
python setup.py build_ext -i
pip install -e .

Step3: Installing other packages

pip install -r requirements.txt

Download pretrained model

Please download pretrained models and unzip them to MODEL_PATH

Inference single image

python inference_single_image.py --image_path=/path/to/image --load_weights_folder=MODEL_PATH

Evaluation

Download test dataset

Please download test dataset

It is recommended to unpack all test data and training data into the same data path and then modify the DATA_PATH when running a training or evaluation script.

Evaluate NYUv2/InteriorNet/ScanNet depth or norm

Modify the evaluation script in eval.sh to evaluate NYUv2/InteriorNet/ScanNet depth and norm separately

python evaluation/nyuv2_eval_norm.py \
  --data_path DATA_PATH \
  --load_weights_folder MODEL_PATH \

Trainning

Download NYU V2 dataset

The raw NYU dataset is about 400G and has 590 videos. You can download the raw datasets from there

Extract Main directions

python extract_vps_nyu.py --data_path DATA_PATH --output_dir VPS_PATH --failed_list TMP_LIST -- thresh 60 

If you need to train with a random flip, run the main direction extraction script on the images before and after the flip(add --flip) in advance, and note the failure examples, which can be skipped by referring to the code in datasets/nyu_datases.py.

Training

Modify the training script train.sh for PATH or different trainning settings.

python train.py \
  --data_path DATA_PATH \
  --val_path DATA_PATH \
  --train_split ./splits/nyu_train_0_10_20_30_40_21483-exceptfailed-21465.txt \
  --vps_path VPS_PATH \
  --log_dir LOG_PATH \
  --model_name 1 \
  --batch_size 32 \
  --num_epochs 50 \
  --start_epoch 0 \
  --using_disp2seg \
  --using_normloss \
  --load_weights_folder PRETRAIN_MODEL_PATH \
  --lambda_planar_reg 0.1 \
  --lambda_norm_reg 0.05 \
  --planar_thresh 200 \

Acknowledgement

We borrowed a lot of codes from scikit-image, monodepth2, P2Net, and LEGO. Thanks for their excellent works!

Owner
SJTU-ViSYS
Vision and Intelligent System Group
SJTU-ViSYS
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (ι™ˆδΈ‰ε…ƒ) 81 Nov 28, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022