PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Overview

StructDepth

PyTorch implementation of our ICCV2021 paper:

StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Boying Li*, Yuan Huang*, Zeyu Liu, Danping Zou, Wenxian Yu

(* Equal Contribution) Image text Please consider citing our paper in your publications if the project helps your research.

@inproceedings{structdepth,
  title={StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation},
  author={Li, Boying and Huang, Yuan and Liu, Zeyu and Zou, Danping and Yu, Wenxian},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Getting Started

Installation

The Python and PyTorch versions we use:

python=3.6

pytorch=1.7.1=py3.6_cuda10.1.243_cudnn7.6.3_0

Step1: Creating a virtual environment

conda create -n struct_depth python=3.6
conda activate struct_depth
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

Step2: Download the modified scikit_image package , in which the input parameters of the Felzenswalb algorithm have been changed to accommodate our method.

unzip scikit-image-0.17.2.zip
cd scikit-image-0.17.2
python setup.py build_ext -i
pip install -e .

Step3: Installing other packages

pip install -r requirements.txt

Download pretrained model

Please download pretrained models and unzip them to MODEL_PATH

Inference single image

python inference_single_image.py --image_path=/path/to/image --load_weights_folder=MODEL_PATH

Evaluation

Download test dataset

Please download test dataset

It is recommended to unpack all test data and training data into the same data path and then modify the DATA_PATH when running a training or evaluation script.

Evaluate NYUv2/InteriorNet/ScanNet depth or norm

Modify the evaluation script in eval.sh to evaluate NYUv2/InteriorNet/ScanNet depth and norm separately

python evaluation/nyuv2_eval_norm.py \
  --data_path DATA_PATH \
  --load_weights_folder MODEL_PATH \

Trainning

Download NYU V2 dataset

The raw NYU dataset is about 400G and has 590 videos. You can download the raw datasets from there

Extract Main directions

python extract_vps_nyu.py --data_path DATA_PATH --output_dir VPS_PATH --failed_list TMP_LIST -- thresh 60 

If you need to train with a random flip, run the main direction extraction script on the images before and after the flip(add --flip) in advance, and note the failure examples, which can be skipped by referring to the code in datasets/nyu_datases.py.

Training

Modify the training script train.sh for PATH or different trainning settings.

python train.py \
  --data_path DATA_PATH \
  --val_path DATA_PATH \
  --train_split ./splits/nyu_train_0_10_20_30_40_21483-exceptfailed-21465.txt \
  --vps_path VPS_PATH \
  --log_dir LOG_PATH \
  --model_name 1 \
  --batch_size 32 \
  --num_epochs 50 \
  --start_epoch 0 \
  --using_disp2seg \
  --using_normloss \
  --load_weights_folder PRETRAIN_MODEL_PATH \
  --lambda_planar_reg 0.1 \
  --lambda_norm_reg 0.05 \
  --planar_thresh 200 \

Acknowledgement

We borrowed a lot of codes from scikit-image, monodepth2, P2Net, and LEGO. Thanks for their excellent works!

Owner
SJTU-ViSYS
Vision and Intelligent System Group
SJTU-ViSYS
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022