This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Overview

Amortized Assimilation

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the time the forecast is initialized. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce effective estimation schemes. We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations with no need for ground truth data. We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.

Installation

Requirements

This code can be memory heavy as each experiment unrolls at least 40 assimilation steps (which from a memory perspective is equivalent to a 40x deeper network plus whatever is needed for the simulation). Current settings are optimized to max out memory usage on a GTX1070 GPU. The easiest ways to tune memory usage are network width and ensemble size. Checkpointing could significantly improve memory utilization but is not currently implemented.

To install the dependencies, use the provided requirements.txt file:

pip install -r requirements.txt 

There is also a dependency on torchdiffeq. Instructions for installing torchdiffeq can be found at https://github.com/rtqichen/torchdiffeq, but are also copied below:

pip install git+https://github.com/rtqichen/torchdiffeq

To run the DA comparison models, you will need to install DAPPER. Instructions can be found here: https://github.com/nansencenter/DAPPER.

Installing this package

A setup.py file has been included for installation. Navigate to the home folder and run:

pip install -e . 

Run experiments

All experiments can be run from experiments/run_*.py. Default settings are those used in the paper. First navigate to the experiments directory then execute:

L96 Full Observations

python run_L96Conv.py --obs_conf full_obs

L96 Partial Observations (every fourth).

python run_L96Conv.py --obs_conf every_4th_dim_partial_obs

VL20 Partial

python run_VLConv.py --obs_conf every_4th_dim_partial_obs

KS Full

python run_KS.py 

Other modifications of interest might be to adjust the step size for the integrator (--step_size, default .1), observation error(--noise, default 1.), ensemble size (--m, default 10), or network width (--hidden_size, default 64 for conv). The L96 code also includes options for self-supervised and supervised analysis losses (ss_analysis, clean_analysis) used for creating Figure 6 from the paper. Custom observation operators can be created in the same style as those found in obs_configs.py.

Parameters for traditional DA approaches were tuned via grid search over smaller sequences. Those hyperparameters were then used for longer assimilation sequences.

To test a new architecture, you'll want to ensure it's obeying the same API as the models in models.py, but otherwise it should slot in without major issues.

Datasets

Code is included for generating the Lorenz 96, VL 20 and KS datasets. This can be found under amortized_assimilation/data_utils.py

References

DAPPER: Raanes, P. N., & others. (2018). nansencenter/DAPPER: Version 0.8. https://doi.org/10.5281/zenodo.2029296

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1835825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


If you found the code or ideas in this repository useful, please consider citing:

@article{mccabe2021l2assim,
  title={Learning to Assimilate in Chaotic Dynamical Systems},
  author={McCabe, Michael and Brown, Jed},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022