Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

Overview

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data

arXiv License: MIT

Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl

| Project Page | Paper | Poster | Slides | Video |

1

This repository includes the official and maintained PyTorch implementation of the paper OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data.

Abstract

Convolutional neural networks (CNNs) are the current state-of-the-art meta-algorithm for volumetric segmentation of medical data, for example, to localize COVID-19 infected tissue on computer tomography scans or the detection of tumour volumes in magnetic resonance imaging. A key limitation of 3D CNNs on voxelised data is that the memory consumption grows cubically with the training data resolution. Occupancy networks (O-Nets) are an alternative for which the data is represented continuously in a function space and 3D shapes are learned as a continuous decision boundary. While O-Nets are significantly more memory efficient than 3D CNNs, they are limited to simple shapes, are relatively slow at inference, and have not yet been adapted for 3D semantic segmentation of medical data. Here, we propose Occupancy Networks for Semantic Segmentation (OSS-Nets) to accurately and memory-efficiently segment 3D medical data. We build upon the original O-Net with modifications for increased expressiveness leading to improved segmentation performance comparable to 3D CNNs, as well as modifications for faster inference. We leverage local observations to represent complex shapes and prior encoder predictions to expedite inference. We showcase OSS-Net's performance on 3D brain tumour and liver segmentation against a function space baseline (O-Net), a performance baseline (3D residual U-Net), and an efficiency baseline (2D residual U-Net). OSS-Net yields segmentation results similar to the performance baseline and superior to the function space and efficiency baselines. In terms of memory efficiency, OSS-Net consumes comparable amounts of memory as the function space baseline, somewhat more memory than the efficiency baseline and significantly less than the performance baseline. As such, OSS-Net enables memory-efficient and accurate 3D semantic segmentation that can scale to high resolutions.

If you find this research useful in your work, please cite our paper:

@inproceedings{Reich2021,
        title={{OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data}},
        author={Reich, Christoph and Prangemeier, Tim and Cetin, {\"O}zdemir and Koeppl, Heinz},
        booktitle={British Machine Vision Conference},
        year={2021},
        organization={British Machine Vision Association},
}

Dependencies

All required Python packages can be installed by:

pip install -r requirements.txt

To install the official implementation of the Padé Activation Unit [1] (taken from the official repository) run:

cd pade_activation_unit/cuda
python setup.py build install

The code is tested with PyTorch 1.8.1 and CUDA 11.1 on Linux with Python 3.8.5! Using other PyTorch and CUDA versions newer than PyTorch 1.7.0 and CUDA 10.1 should also be possible.

Data

The BraTS 2020 dataset can be downloaded here and the LiTS dataset can be downloaded here. Please note, that accounts are required to login and downlaod the data on both websites.

The used training and validation split of the BraTS 2020 dataset is available here.

For generating the border maps, necessary if border based sampling is utilized, please use the generate_borders_bra_ts_2020.py and generate_borders_lits.py script.

Trained Models

Table 1. Segmentation results of trained networks. Weights are generally available here and specific models are linked below.

Model Dice () BraTS 2020 IoU () BraTS 2020 Dice () LiTS IoU () LiTS
O-Net [2] 0.7016 0.5615 0.6506 0.4842 - -
OSS-Net A 0.8592 0.7644 0.7127 0.5579 weights BraTS weights LiTS
OSS-Net B 0.8541 0.7572 0.7585 0.6154 weights BraTS weights LiTS
OSS-Net C 0.8842 0.7991 0.7616 0.6201 weights BraTS weights LiTS
OSS-Net D 0.8774 0.7876 0.7566 0.6150 weights BraTS weights LiTS

Usage

Training

To reproduce the results presented in Table 1, we provide multiple sh scripts, which can be found in the scripts folder. Please change the dataset path and CUDA devices according to your system.

To perform training runs with different settings use the command line arguments of the train_oss_net.py file. The train_oss_net.py takes the following command line arguments:

Argument Default value Info
--train False Binary flag. If set training will be performed.
--test False Binary flag. If set testing will be performed.
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--epochs 50 Number of epochs to perform while training.
--batch_size 8 Number of epochs to perform while training.
--training_samples 2 ** 14 Number of coordinates to be samples during training.
--load_model "" Path to model to be loaded.
--segmentation_loss_factor 0.1 Auxiliary segmentation loss factor to be utilized.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.
--uniform_sampling False Binary flag. If set locations are sampled uniformly during training.

Please note that the naming of the different OSS-Net variants differs in the code between the paper and Table 1.

Inference

To perform inference, use the inference_oss_net.py script. The script takes the following command line arguments:

Argument Default value Info
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--load_model "" Path to model to be loaded.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.

During inference the predicted occupancy voxel grid, the mesh prediction, and the label as a mesh are saved. The meshes are saved as PyTorch (.pt) files and also as .obj files. The occupancy grid is only saved as a PyTorch file.

Acknowledgements

We thank Marius Memmel and Nicolas Wagner for the insightful discussions, Alexander Christ and Tim Kircher for giving feedback on the first draft, and Markus Baier as well as Bastian Alt for aid with the computational setup.

This work was supported by the Landesoffensive für wissenschaftliche Exzellenz as part of the LOEWE Schwerpunkt CompuGene. H.K. acknowledges support from the European Re- search Council (ERC) with the consolidator grant CONSYN (nr. 773196). O.C. is supported by the Alexander von Humboldt Foundation Philipp Schwartz Initiative.

References

[1] @inproceedings{Molina2020Padé,
        title={{Pad\'{e} Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks}},
        author={Alejandro Molina and Patrick Schramowski and Kristian Kersting},
        booktitle={International Conference on Learning Representations},
        year={2020}
}
[2] @inproceedings{Mescheder2019,
        title={{Occupancy Networks: Learning 3D Reconstruction in Function Space}},
        author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
        booktitle={CVPR},
        pages={4460--4470},
        year={2019}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022