Measuring if attention is explanation with ROAR

Overview

NLP ROAR Interpretability

Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining

Plot of ROAR and Recursive ROAR faithfulness curves

Install

git clone https://github.com/AndreasMadsen/nlp-roar-interpretability.git
cd nlp-roar-interpretability
python -m pip install -e .

Experiments

Tasks

There are scripts for each dataset. Note that some tasks share a dataset. Use this list to identify how to train a model for each task.

  • SST: python experiments/stanford_sentiment.py
  • SNLI: python experiments/stanford_nli.py
  • IMDB: python experiments/imdb.py
  • MIMIC (Diabetes): python experiments/mimic.py --subset diabetes
  • MIMIC (Anemia): python experiments/mimic.py --subset anemia
  • bABI-1: python experiments/babi.py --task 1
  • bABI-2: python experiments/babi.py --task 2
  • bABI-3: python experiments/babi.py --task 3

Parameters

Each of the above scripts stanford_sentiment, stanford_nli, imdb, mimic, and babi take the same set of CLI arguments. You can learn about each argument with --help. The most important arguments which will allow you to run the experiments presented in the paper are:

  • --importance-measure: this specifies which importance measure is used. It can be either random, mutual-information, attention , gradient, or integrated-gradient.
  • --seed: specifies the seed used to initialize the model.
  • --roar-strategy: should ROAR masking be done absoloute (count) or relative (quantile),
  • --k: the proportion of tokens in % to mask if --roar-strategy quantile is used. The number of tokens if --roar-strategy count is used.
  • --recursive: indicates that model to use for computing the importance measure has --k set to --k - --recursive-step-size instead of 0 as used in classic ROAR.

Note, for --k > 0, the reference model must already be trained. For example, in the non-recursive case, this means that a model trained with --k 0 must already available.

Running on a HPC setup

For downloading dataset dependencies we provide a download.sh script.

Additionally, we provide script for submitting all jobs to a Slurm queue, in batch_jobs/. Note again, that the ROAR script assume there are checkpoints for the baseline --k 0 models.

The jobs automatically use $SCRATCH/nlproar as the presistent dir.

MIMIC

See https://mimic.physionet.org/gettingstarted/access/ for how to access MIMIC. You will need to download DIAGNOSES_ICD.csv.gz and NOTEEVENTS.csv.gz and place them in mimic/ relative to your presistent dir.

Owner
Andreas Madsen
Researching interpretability for Machine Learning because society needs it.
Andreas Madsen
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022