This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.

Overview

TransFill-Reference-Inpainting

This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations (Yuqian Zhou, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi) at CVPR'21. According to some confidential reasons, we are not planning to release the training/testing codes and models. Online-demo will be public once we set up the server. However, we release the testing dataset for comparsion, and the scripts to prepare the training dataset.

[Paper] | [Project] | [Demo Video]

Introduction

Applications of TransFill: Photo Content Swap, Object Removal, Color Adjustment.

Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.

Download and Prepare RealEstate10K

We prepare the script of downloading and extracting paired frames from RealEstate10K. First, go to the RealEstate10K official website to download the .txt files. Then unzip it and put the folder into the data folder.

Run our script to download the video samples and extract paired frames with frame difference (stride) 10, 20 and 30.

python download_realestate10k.py \
--txt_dir ./data/RealEstate10K/train \
--out_dir ./RealEstate10K_frames/train \
--dataset_dir ./RealEstate10K_pair/train \
--sample_num 10

Choose the sample number to download limited number of samples (say 100 videos). You may need to install youtube-dl package or VPNs (in Mainland China) to download YouTube videos. Google also has some limitations of downloading amount, so I did not use multi-thread to increase the downloading speed on purpose. The process is fairly long, so I suggest downloading a subset of videos to extract samples first, and gradually extending it to download the whole dataset. Any other downloading issues, please inquire the original provider of RealEstate10K.

Download Testing Data

We shared the testing images in the paper, including the 'Small Set' containing 300 pairs of images from RealEstate10K, and a 'Real Set' containing 100+ challenging paired images from users. The data can be downloaded from the Google Drive.

To reproduce the results in the Table 1 of the paper, download and unzip the 'Small Set' into data folder, and run

python compute_metrics.py

The script will compare the images generated by TransFill with the ground truth images in the target folder, and return PSNR, SSIM and LPIPS score.

In the 'Real Set', ProFill and TransFill results are shared for the researchers to compare. Note that there are some failure cases within the folder, which shows the room for future works to improve TransFill.

Test on Your Own Data

We plan to set up the online demo server in the near future. But before we finish that, if you are really eager for a comparsion of the results for research purpose, feel free to send the testing data in the format of 'target', 'source', 'hole' folders to [email protected]. The resolution has better be smaller than 1K x 1K, otherwise we have to resize the image to avoid memory issues. To make fully use of the advantages of TransFill, we suggest the hole to be large enough by including more background contents of the target image.

We won't keep your data and will return the testing results to you within 2 working days.

Citation

If you think this repo and the manuscript helpful, please consider citing us.

@inproceedings{zhou2021transfill,
  title={TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations},
  author={Zhou, Yuqian and Barnes, Connelly and Shechtman, Eli and Amirghodsi, Sohrab},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2266--2276},
  year={2021}
}

Acknowledgements

This project is conducted when the author interned at Adobe Photoshop and Adobe Research.

Owner
Yuqian Zhou
Ph.D of Beckman Institute, UIUC Mphil of ECE in HKUST.
Yuqian Zhou
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023