The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Overview

README

The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Introduction

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., deep learning) domain.

image-20210528201234901

Requirements

See requirements.txt

To install torch_geometric, please follow the instruction on pytorch_geometric

Reproduction

To reproduce the results in the paper (using word2vec embeddings)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo (details about data are described below)

For broad domains (e.g., CS)

python run.py --domain cs --method cfl

For narrow domains (e.g., ML)

python run.py --domain cs --method hicfl --narrow

For narrow domains (PU setting) (e.g., ML)

python run.py --domain cs --method hicfl --narrow --pu

All experiments are run on an NVIDIA Quadro RTX 5000 with 16GB of memory under the PyTorch framework. The training of CFL for the CS domain can finish in 1 minute.

Query

To handle user query (using compositional GloVe embeddings as an example)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo

Download GloVe embeddings from https://nlp.stanford.edu/projects/glove/, save the file to features/glove.6B.100d.txt

Example:

python query.py --domain cs --method cfl

The first run will train a model and save the model to model/. For the follow-up queries, the trained model can be loaded for prediction.

You can use the model either in a transductive or in an inductive setting (i.e., whether to include the query terms in training).

Options

You can check out the other options available using:

python run.py --help

Data

Data can be downloaded from Google Drive:

term-candidates/: list of seed terms. Format: term frequency

features/: features of terms (term embeddings trained by word2vec). To use compositional GloVe embeddings as features, you can download GloVe embeddings from https://nlp.stanford.edu/projects/glove/. To load the features, refer to utils.py for more details.

wikipedia/: Wikipedia search results for constructing the core-anchored semantic graph / automatic annotation

  • core-categories/: categories of core terms collected from Wikipedia. Format: term catogory ... category

  • gold-subcategories/: gold-subcategories for each domain collected from Wikipedia. Format: level#Category

  • ranking-results/: Wikipedia search results. 0 means using exact match, 1 means without exact match. Format: term result_1 ... result_k.

    The results are collected by the following script:

    # https://pypi.org/project/wikipedia/
    import wikipedia
    def get_wiki_search_result(term, mode=0):
        if mode==0:
            return wikipedia.search(f"\"{term}\"")
        else:
            return wikipedia.search(term)

train-valid-test/: train/valid/test split for evaluation with core terms

manual-data/:

  • ml2000-test.csv: manually created test set for ML
  • domain-relevance-comparison-pairs.csv: manually created test set for domain relevance comparison

Term lists

Several term lists with domain relevance scores produced by CFL/HiCFL are available on term-lists/

Format:

term  domain relevance score  core/fringe

Sample results for Machine Learning:

image-20210528201345177

Citation

The details of this repo are described in the following paper. If you find this repo useful, please kindly cite it:

@inproceedings{huang2021measuring,
  title={Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach},
  author={Huang, Jie and Chang, Kevin Chen-Chuan and Xiong, Jinjun and Hwu, Wen-mei},
  booktitle={Proceedings of ACL-IJCNLP},
  year={2021}
}
Owner
Jie Huang
Jie Huang
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022