The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Overview

README

The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Introduction

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., deep learning) domain.

image-20210528201234901

Requirements

See requirements.txt

To install torch_geometric, please follow the instruction on pytorch_geometric

Reproduction

To reproduce the results in the paper (using word2vec embeddings)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo (details about data are described below)

For broad domains (e.g., CS)

python run.py --domain cs --method cfl

For narrow domains (e.g., ML)

python run.py --domain cs --method hicfl --narrow

For narrow domains (PU setting) (e.g., ML)

python run.py --domain cs --method hicfl --narrow --pu

All experiments are run on an NVIDIA Quadro RTX 5000 with 16GB of memory under the PyTorch framework. The training of CFL for the CS domain can finish in 1 minute.

Query

To handle user query (using compositional GloVe embeddings as an example)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo

Download GloVe embeddings from https://nlp.stanford.edu/projects/glove/, save the file to features/glove.6B.100d.txt

Example:

python query.py --domain cs --method cfl

The first run will train a model and save the model to model/. For the follow-up queries, the trained model can be loaded for prediction.

You can use the model either in a transductive or in an inductive setting (i.e., whether to include the query terms in training).

Options

You can check out the other options available using:

python run.py --help

Data

Data can be downloaded from Google Drive:

term-candidates/: list of seed terms. Format: term frequency

features/: features of terms (term embeddings trained by word2vec). To use compositional GloVe embeddings as features, you can download GloVe embeddings from https://nlp.stanford.edu/projects/glove/. To load the features, refer to utils.py for more details.

wikipedia/: Wikipedia search results for constructing the core-anchored semantic graph / automatic annotation

  • core-categories/: categories of core terms collected from Wikipedia. Format: term catogory ... category

  • gold-subcategories/: gold-subcategories for each domain collected from Wikipedia. Format: level#Category

  • ranking-results/: Wikipedia search results. 0 means using exact match, 1 means without exact match. Format: term result_1 ... result_k.

    The results are collected by the following script:

    # https://pypi.org/project/wikipedia/
    import wikipedia
    def get_wiki_search_result(term, mode=0):
        if mode==0:
            return wikipedia.search(f"\"{term}\"")
        else:
            return wikipedia.search(term)

train-valid-test/: train/valid/test split for evaluation with core terms

manual-data/:

  • ml2000-test.csv: manually created test set for ML
  • domain-relevance-comparison-pairs.csv: manually created test set for domain relevance comparison

Term lists

Several term lists with domain relevance scores produced by CFL/HiCFL are available on term-lists/

Format:

term  domain relevance score  core/fringe

Sample results for Machine Learning:

image-20210528201345177

Citation

The details of this repo are described in the following paper. If you find this repo useful, please kindly cite it:

@inproceedings{huang2021measuring,
  title={Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach},
  author={Huang, Jie and Chang, Kevin Chen-Chuan and Xiong, Jinjun and Hwu, Wen-mei},
  booktitle={Proceedings of ACL-IJCNLP},
  year={2021}
}
Owner
Jie Huang
Jie Huang
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
πŸ… Top 5% in 제2회 μ—°κ΅¬κ°œλ°œνŠΉκ΅¬ 인곡지λŠ₯ κ²½μ§„λŒ€νšŒ AI SPARK μ±Œλ¦°μ§€

AI_SPARK_CHALLENG_Object_Detection 제2회 μ—°κ΅¬κ°œλ°œνŠΉκ΅¬ 인곡지λŠ₯ κ²½μ§„λŒ€νšŒ AI SPARK μ±Œλ¦°μ§€ πŸ… Top 5% in mAP(0.75) (443λͺ… 쀑 13λ“±, mAP: 0.98116) λŒ€νšŒ μ„€λͺ… Edge ν™˜κ²½μ—μ„œμ˜ κ°€μΆ• Object Dete

3 Sep 19, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter β €β € A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022