Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

Overview

scc4onnx

Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Allow the user to specify the name of the input OP to change the input order.
  • All number of dimensions can be freely changed, not only 4 dimensions such as NCHW and NHWC.
  • Simply rewrite the input order of the input OP to the specified order and extrapolate Transpose after the input OP so that it does not affect the processing of subsequent OPs.
  • Allows the user to change the channel order of RGB and BGR by specifying options.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scc4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/scc4onnx:latest

### docker build
$ docker build -t pinto0309/scc4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/scc4onnx:latest
$ cd /workdir

2. CLI Usage

$ scc4onnx -h

usage:
  scc4onnx [-h]
  --input_onnx_file_path INPUT_ONNX_FILE_PATH
  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
  [--input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM]
  [--channel_change_inputs INPUT_OP_NAME DIM]
  [--non_verbose]

optional arguments:
  -h, --help
      show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  --input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM
      Specify the name of the input_op to be dimensionally changed and the order of the
      dimensions after the change.
      The name of the input_op to be dimensionally changed can be specified multiple times.

      e.g.
      --input_op_names_and_order_dims aaa [0,3,1,2] \
      --input_op_names_and_order_dims bbb [0,2,3,1] \
      --input_op_names_and_order_dims ccc [0,3,1,2,4,5]

  --channel_change_inputs INPUT_OP_NAME DIM
      Change the channel order of RGB and BGR.
      If the original model is RGB, it is transposed to BGR.
      If the original model is BGR, it is transposed to RGB.
      It can be selectively specified from among the OP names specified
      in --input_op_names_and_order_dims.
      OP names not specified in --input_op_names_and_order_dims are ignored.
      Multiple times can be specified as many times as the number of OP names specified
      in --input_op_names_and_order_dims.
      --channel_change_inputs op_name dimension_number_representing_the_channel
      dimension_number_representing_the_channel must specify the dimension position before
      the change in input_op_names_and_order_dims.
      For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.

      e.g.
      --channel_change_inputs aaa 3 \
      --channel_change_inputs bbb 1 \
      --channel_change_inputs ccc 5

  --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scc4onnx import order_conversion
>>> help(order_conversion)
Help on function order_conversion in module scc4onnx.onnx_input_order_converter:

order_conversion(
  input_op_names_and_order_dims: Union[dict, NoneType] = None,
  channel_change_inputs: Union[dict, NoneType] = None,
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
    
    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.
    
    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
    
    input_op_names_and_order_dims: Optional[dict]
        Specify the name of the input_op to be dimensionally changed and
        the order of the dimensions after the change.
        The name of the input_op to be dimensionally changed
        can be specified multiple times.
    
        e.g.
        input_op_names_and_order_dims = {
            "input_op_name1": [0,3,1,2],
            "input_op_name2": [0,2,3,1],
            "input_op_name3": [0,3,1,2,4,5],
        }
    
    channel_change_inputs: Optional[dict]
        Change the channel order of RGB and BGR.
        If the original model is RGB, it is transposed to BGR.
        If the original model is BGR, it is transposed to RGB.
        It can be selectively specified from among the OP names
        specified in input_op_names_and_order_dims.
        OP names not specified in input_op_names_and_order_dims are ignored.
        Multiple times can be specified as many times as the number
        of OP names specified in input_op_names_and_order_dims.
        channel_change_inputs = {"op_name": dimension_number_representing_the_channel}
        dimension_number_representing_the_channel must specify
        the dimension position after the change in input_op_names_and_order_dims.
        For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
    
        e.g.
        channel_change_inputs = {
            "aaa": 1,
            "bbb": 3,
            "ccc": 2,
        }
    
    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False
    
    Returns
    -------
    order_converted_graph: onnx.ModelProto
        Order converted onnx ModelProto

4. CLI Execution

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

5. In-script Execution

from scc4onnx import order_conversion

order_converted_graph = order_conversion(
    onnx_graph=graph,
    input_op_names_and_order_dims={"left": [0,2,3,1], "right": [0,2,3,1]},
    channel_change_inputs={"left": 1, "right": 1},
    non_verbose=True,
)

6. Sample

6-1. Transpose only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1]

image image

6-2. Transpose + RGB<->BGR

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

6-3. RGB<->BGR only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Releases(1.0.5)
  • 1.0.5(Sep 9, 2022)

    • Add short form parameter
      $ scc4onnx -h
      
      usage:
        scc4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -of OUTPUT_ONNX_FILE_PATH
        [-ioo INPUT_OP_NAME ORDER_DIM]
        [-cci INPUT_OP_NAME DIM]
        [-n]
      
      optional arguments:
        -h, --help
            show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
            Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
            Output onnx file path.
      
        -ioo INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS, --input_op_names_and_order_dims INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS
            Specify the name of the input_op to be dimensionally changed and the order of the
            dimensions after the change.
            The name of the input_op to be dimensionally changed can be specified multiple times.
      
            e.g.
            --input_op_names_and_order_dims aaa [0,3,1,2] \
            --input_op_names_and_order_dims bbb [0,2,3,1] \
            --input_op_names_and_order_dims ccc [0,3,1,2,4,5]
      
        -cci CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS, --channel_change_inputs CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS
            Change the channel order of RGB and BGR.
            If the original model is RGB, it is transposed to BGR.
            If the original model is BGR, it is transposed to RGB.
            It can be selectively specified from among the OP names specified
            in --input_op_names_and_order_dims.
            OP names not specified in --input_op_names_and_order_dims are ignored.
            Multiple times can be specified as many times as the number of OP names specified
            in --input_op_names_and_order_dims.
            --channel_change_inputs op_name dimension_number_representing_the_channel
            dimension_number_representing_the_channel must specify the dimension position before
            the change in input_op_names_and_order_dims.
            For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
      
            e.g.
            --channel_change_inputs aaa 3 \
            --channel_change_inputs bbb 1 \
            --channel_change_inputs ccc 5
      
        -n, --non_verbose
            Do not show all information logs. Only error logs are displayed.
      

    Full Changelog: https://github.com/PINTO0309/scc4onnx/compare/1.0.4...1.0.5

    Source code(tar.gz)
    Source code(zip)
  • 1.0.4(May 25, 2022)

  • 1.0.3(May 15, 2022)

  • 1.0.2(May 10, 2022)

  • 1.0.1(Apr 19, 2022)

  • 1.0.0(Apr 18, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022