Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Overview

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

Pouya Samangouei*, Maya Kabkab*, Rama Chellappa

[*: authors contributed equally]

This repository contains the implementation of our ICLR-18 paper: Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

If you find this code or the paper useful, please consider citing:

@inproceedings{defensegan,
  title={Defense-GAN: Protecting classifiers against adversarial attacks using generative models},
  author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},
  booktitle={International Conference on Learning Representations},
  year={2018}
}

alt text alt text

Contents

  1. Installation
  2. Usage

Installation

  1. Clone this repository:
git clone --recursive https://github.com/kabkabm/defensegan
cd defensegan
git submodule update --init --recursive
  1. Install requirements:
pip install -r requirements.txt

Note: if you don't have a GPU install the cpu version of TensorFlow 1.7.

  1. Download the dataset and prepare data directory:
python download_dataset.py [mnist|f-mnist|celeba]
  1. Create or link output and debug directories:
mkdir output
mkdir debug

or

ln -s <path-to-output> output
ln -s <path-to-debug> debug

Usage

Train a GAN model

python train.py --cfg <path> --is_train <extra-args>
  • --cfg This can be set to either a .yml configuration file like the ones in experiments/cfgs, or an output directory path.
  • <extra-args> can be any parameter that is defined in the config file.

The training will create a directory in the output directory per experiment with the same name as to save the model checkpoints. If <extra-args> are different from the ones that are defined in <config>, the output directory name will reflect the difference.

A config file is saved into each experiment directory so that they can be loaded if <path> is the address to that directory.

Example

After running

python train.py --cfg experiments/cfgs/gans/mnist.yml --is_train

output/gans/mnist will be created.

[optional] Save reconstructions and datasets into cache:

python train.py --cfg experiments/cfgs/<config> --save_recs
python train.py --cfg experiments/cfgs/<config> --save_ds

Example

After running the training code for mnist, the reconstructions and the dataset can be saved with:

python train.py --cfg output/gans/mnist --save_recs
python train.py --cfg output/gans/mnist --save_ds

As training goes on, sample outputs of the generator are written to debug/gans/<model_config>.

Black-box attacks

To perform black-box experiments run blackbox.py [Table 1 and 2 of the paper]:

python blackbox.py --cfg <path> \
    --results_dir <results_path> \
    --bb_model {A, B, C, D, E} \
    --sub_model {A, B, C, D, E} \
    --fgsm_eps <epsilon> \
    --defense_type {none|defense_gan|adv_tr}
    [--train_on_recs or --online_training]
    <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.

  • --results_dir The path where the final results are saved in text files.

  • --bb_model The black-box model architectures that are used in Table 1 and Table 2.

  • --sub_model The substitute model architectures that are used in Table 1 and Table 2.

  • --defense_type specifies the type of defense to protect the classifier.

  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.

  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in blackbox.py. The most important ones are:

    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_train The number of images to train the black-box model on. For debugging purposes set this to a small value.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
    • --debug This will save qualitative attack and reconstruction results in debug directory and will not run the adversarial attack part of the code.
  • Refer to blackbox.py for more flag descriptions.

Example

  • Row 1 of Table 1 Defense-GAN-Orig:
python blackbox.py --cfg output/gans/mnist \
    --results_dir defensegan \
    --bb_model A \
    --sub_model B \
    --fgsm_eps 0.3 \
    --defense_type defense_gan
  • If you set --nb_epochs 1 --nb_epochs_s 1 --data_aug 1 you will get a quick glance of how the script works.

White-box attacks

To test Defense-GAN for white-box attacks run whitebox.py [Tables 4, 5, 12 of the paper]:

python whitebox.py --cfg <path> \
       --results_dir <results-dir> \
       --attack_type {fgsm, rand_fgsm, cw} \
       --defense_type {none|defense_gan|adv_tr} \
       --model {A, B, C, D} \
       [--train_on_recs or --online_training]
       <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.
  • --results_dir The path where the final results are saved in text files.
  • --defense_type specifies the type of defense to protect the classifier.
  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.
  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in whitebox.py. The most important ones are:
    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
  • Refer to whitebox.py for more flag descriptions.

Example

First row of Table 4:

python whitebox.py --cfg <path> \
       --results_dir whitebox \
       --attack_type fgsm \
       --defense_type defense_gan \
       --model A
  • If you want to quickly see how the scripts work, add the following flags:
--nb_epochs 1 --num_tests 400
Owner
Maya Kabkab
Maya Kabkab
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022