This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Overview

Self-Supervised Learning with Vision Transformers

By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu

This repo is the official implementation of "Self-Supervised Learning with Swin Transformers".

A important feature of this codebase is to include Swin Transformer as one of the backbones, such that we can evaluate the transferring performance of the learnt representations on down-stream tasks of object detection and semantic segmentation. This evaluation is usually not included in previous works due to the use of ViT/DeiT, which has not been well tamed for down-stream tasks.

It currently includes code and models for the following tasks:

Self-Supervised Learning and Linear Evaluation: Included in this repo. See get_started.md for a quick start.

Transferring Performance on Object Detection/Instance Segmentation: See Swin Transformer for Object Detection.

Transferring Performance on Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Highlights

  • Include down-stream evaluation: the first work to evaluate the transferring performance on down-stream tasks for SSL using Transformers
  • Small tricks: significantly less tricks than previous works, such as MoCo v3 and DINO
  • High accuracy on ImageNet-1K linear evaluation: 72.8 vs 72.5 (MoCo v3) vs 72.5 (DINO) using DeiT-S/16 and 300 epoch pre-training

Updates

05/13/2021

  1. Self-Supervised models with DeiT-Small on ImageNet-1K (MoBY-DeiT-Small-300Ep-Pretrained, MoBY-DeiT-Small-300Ep-Linear) are provided.
  2. The supporting code and config for self-supervised learning with DeiT-Small are provided.

05/11/2021

Initial Commits:

  1. Self-Supervised Pre-training models on ImageNet-1K (MoBY-Swin-T-300Ep-Pretrained, MoBY-Swin-T-300Ep-Linear) are provided.
  2. The supported code and models for self-supervised pre-training and ImageNet-1K linear evaluation, COCO object detection and ADE20K semantic segmentation are provided.

Introduction

MoBY: a self-supervised learning approach by combining MoCo v2 and BYOL

MoBY (the name MoBY stands for MoCo v2 with BYOL) is initially described in arxiv, which is a combination of two popular self-supervised learning approaches: MoCo v2 and BYOL. It inherits the momentum design, the key queue, and the contrastive loss used in MoCo v2, and inherits the asymmetric encoders, asymmetric data augmentations and the momentum scheduler in BYOL.

MoBY achieves reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.3% top-1 accuracy using DeiT and Swin-T, respectively, by 300-epoch training. The performance is on par with recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks.

teaser_moby

Swin Transformer as a backbone

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

We involve Swin Transformer as one of backbones to evaluate the transferring performance on down-stream tasks such as object detection. This differentiate this codebase with other approaches studying SSL on Transformer architectures.

ImageNet-1K linear evaluation

Method Architecture Epochs Params FLOPs img/s Top-1 Accuracy Pre-trained Checkpoint Linear Checkpoint
Supervised Swin-T 300 28M 4.5G 755.2 81.2 Here
MoBY Swin-T 100 28M 4.5G 755.2 70.9 TBA
MoBY1 Swin-T 100 28M 4.5G 755.2 72.0 TBA
MoBY DeiT-S 300 22M 4.6G 940.4 72.8 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
MoBY Swin-T 300 28M 4.5G 755.2 75.3 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
  • 1 denotes the result of MoBY which has adopted a trick from MoCo v3 that replace theLayerNorm layers before the MLP blocks by BatchNorm.

  • Access code for baidu is moby.

Transferring to Downstream Tasks

COCO Object Detection (2017 val)

Backbone Method Model Schd. box mAP mask mAP Params FLOPs
Swin-T Mask R-CNN Sup. 1x 43.7 39.8 48M 267G
Swin-T Mask R-CNN MoBY 1x 43.6 39.6 48M 267G
Swin-T Mask R-CNN Sup. 3x 46.0 41.6 48M 267G
Swin-T Mask R-CNN MoBY 3x 46.0 41.7 48M 267G
Swin-T Cascade Mask R-CNN Sup. 1x 48.1 41.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 1x 48.1 41.5 86M 745G
Swin-T Cascade Mask R-CNN Sup. 3x 50.4 43.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 3x 50.2 43.5 86M 745G

ADE20K Semantic Segmentation (val)

Backbone Method Model Crop Size Schd. mIoU mIoU (ms+flip) Params FLOPs
Swin-T UPerNet Sup. 512x512 160K 44.51 45.81 60M 945G
Swin-T UPerNet MoBY 512x512 160K 44.06 45.58 60M 945G

Citing MoBY and Swin

MoBY

@article{xie2021moby,
  title={Self-Supervised Learning with Swin Transformers}, 
  author={Zhenda Xie and Yutong Lin and Zhuliang Yao and Zheng Zhang and Qi Dai and Yue Cao and Han Hu},
  journal={arXiv preprint arXiv:2105.04553},
  year={2021}
}

Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Getting Started

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
5 Jan 05, 2023
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022