Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

Overview

Python 3.6

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes

Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Chang-Su Kim

overview

Official implementation for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes" [paper] [supp] [video].

We construct a new dataset called "SDLane". SDLane is available at here. Now, only test set is provided due to privacy issues. All dataset will be provided soon.

Video

Video

Related work

We wil also present another paper, "Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation", accepted to CVPR 2022 (oral) [github] [video].

Requirements

  • PyTorch >= 1.6
  • CUDA >= 10.0
  • CuDNN >= 7.6.5
  • python >= 3.6

Installation

  1. Download repository. We call this directory as ROOT:
$ git clone https://github.com/dongkwonjin/Eigenlanes.git
  1. Download pre-trained model parameters and preprocessed data in ROOT:
$ cd ROOT
$ unzip pretrained.zip
$ unzip preprocessed.zip
  1. Create conda environment:
$ conda create -n eigenlanes python=3.7 anaconda
$ conda activate eigenlanes
  1. Install dependencies:
$ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
$ pip install -r requirements.txt

Directory structure

.                           # ROOT
├── Preprocessing           # directory for data preprocessing
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P00             # preprocessing step 1
|   |   |   ├── code
|   |   ├── P01             # preprocessing step 2
|   |   |   ├── code
|   │   └── ...
│   └── ...                 # etc.
├── Modeling                # directory for modeling
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── code
│   ├── tusimple           
|   |   ├── code
│   └── ...                 # etc.
├── pretrained              # pretrained model parameters 
│   ├── culane              
│   ├── tusimple            
│   └── ...                 # etc.
├── preprocessed            # preprocessed data
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P03             
|   |   |   ├── output
|   |   ├── P04             
|   |   |   ├── output
|   │   └── ...
│   └── ...
.

Evaluation (for CULane)

To test on CULane, you need to install official CULane evaluation tools. The official metric implementation is available here. Please downloads the tools into ROOT/Modeling/culane/code/evaluation/culane/. The tools require OpenCV C++. Please follow here to install OpenCV C++. Then, you compile the evaluation tools. We recommend to see an installation guideline

$ cd ROOT/Modeling/culane/code/evaluation/culane/
$ make

Train

  1. Set the dataset you want to train (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. Edit config.py if you want to control the training process in detail
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode train --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/ 

Test

  1. Set the dataset you want to test (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. If you want to get the performances of our work,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test_paper --pre_dir ROOT/preprocessed/DATASET_NAME/ --paper_weight_dir ROOT/pretrained/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/
  1. If you want to evaluate a model you trained,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/

Preprocessing

example

Data preprocessing is divided into five steps, which are P00, P01, P02, P03, and P04. Below we describe each step in detail.

  1. In P00, the type of ground-truth lanes in a dataset is converted to pickle format.
  2. In P01, each lane in a training set is represented by 2D points sampled uniformly in the vertical direction.
  3. In P02, lane matrix is constructed and SVD is performed. Then, each lane is transformed to its coefficient vector.
  4. In P03, clustering is performed to obtain lane candidates.
  5. In P04, training labels are generated to train the SI module in the proposed SIIC-Net.

If you want to get the preproessed data, please run the preprocessing codes in order. Also, you can download the preprocessed data.

$ cd ROOT/Preprocessing/DATASET_NAME/PXX_each_preprocessing_step/code/
$ python main.py --dataset_dir /where/is/your/dataset/path/

Reference

@Inproceedings{
    Jin2022eigenlanes,
    title={Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes},
    author={Jin, Dongkwon and Park, Wonhui and Jeong, Seong-Gyun and Kwon, Heeyeon and Kim, Chang-Su},
    booktitle={CVPR},
    year={2022}
}
Owner
Dongkwon Jin
BS: EE, Korea University Grad: EE, Korea University (Current)
Dongkwon Jin
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022