This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Overview

Locus

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

More information: https://research.csiro.au/robotics/locus-pr/

Paper Pre-print: https://arxiv.org/abs/2011.14497

Method overview.

Locus is a global descriptor for large-scale place recognition using sequential 3D LiDAR point clouds. It encodes topological relationships and temporal consistency of scene components to obtain a discriminative and view-point invariant scene representation.

Usage

Set up environment

This project has been tested on Ubuntu 18.04 (with Open3D 0.11, tensorflow 1.8.0, pcl 1.8.1 and python-pcl 0.3.0). Set up the requirments as follows:

  • Create conda environment with open3d and tensorflow-1.8 with python 3.6:
conda create --name locus_env python=3.6
conda activate locus_env
pip install -r requirements.txt
  • Set up python-pcl. See utils/setup_python_pcl.txt. For further instructions, see here.
  • Segment feature extraction uses the pre-trained model from ethz-asl/segmap. Download and copy the relevant content in segmap_data into ~/.segmap/:
./utils/get_segmap_data.bash

Descriptor Generation

Segment and generate Locus descriptor for each scan in a selected sequence (e.g., KITTI sequence 06):

python main.py --seq '06'

The following flags can be used with main.py:

  • --seq: KITTI dataset sequence number.
  • --aug_type: Scan augmentation type (optional for robustness tests).
  • --aug_param: Parameter corresponding to above augmentation.

Evaluation

Sequence-wise place-recognition using extracted descriptors:

python ./evaluation/place_recognition.py  --seq  '06' 

Evaluation of place-recognition performance using Precision-Recall curves (multiple sequences):

python ./evaluation/pr_curve.py 

Additional scripts

Robustness tests:

Code of the robustness tests carried out in section V.C in paper. Extract Locus descriptors from scans of select augmentation:

python main.py --seq '06' --aug_type 'rot' --aug_param 180 # Rotate about z-axis by random angle between 0-180 degrees. 
python main.py --seq '06' --aug_type 'occ' --aug_param 90 # Occlude sector of 90 degrees about random heading. 

Evaluation is done as before. For vizualization, set config.yml->segmentation->visualize to True.

Testing individual modules:

python ./segmentation/extract_segments.py # Extract and save Euclidean segments (S).
python ./segmentation/extract_segment_features.py # Extract and save SegMap-CNN features (Fa) for given S.
python ./descriptor_generation/spatial_pooling.py # Generate and save spatial segment features for given S and Fa.
python ./descriptor_generation/temporal_pooling.py # Generate and save temporal segment features for given S and Fa.
python ./descriptor_generation/locus_descriptor.py # Generate and save Locus global descriptor using above.

Citation

If you find this work usefull in your research, please consider citing:

@inproceedings{vid2021locus,
  title={Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling},
  author={Vidanapathirana, Kavisha and Moghadam, Peyman and Harwood, Ben and Zhao, Muming and Sridharan, Sridha and Fookes, Clinton},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  eprint={arXiv preprint arXiv:2011.14497}
}

Acknowledgment

Functions from 3rd party have been acknowledged at the respective function definitions or readme files. This project was mainly inspired by the following: ethz-asl/segmap and irapkaist/scancontext.

Contact

For questions/feedback,

Owner
Robotics and Autonomous Systems Group
CSIRO's Robotics and Autonomous Systems Group
Robotics and Autonomous Systems Group
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023