Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Overview

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform

Figure 2 This repository is the implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform" (ICCV 2021). Our code is based on CompressAI.

Abstract: We propose a versatile deep image compression network based on Spatial Feature Transform (SFT), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps. In addition, the proposed framework allows us to perform task-aware image compressions for various tasks, e.g., classification, by efficiently estimating optimized quality maps specific to target tasks for our encoding network. This is even possible with a pretrained network without learning separate models for individual tasks. Our algorithm achieves outstanding rate-distortion trade-off compared to the approaches based on multiple models that are optimized separately for several different target rates. At the same level of compression, the proposed approach successfully improves performance on image classification and text region quality preservation via task-aware quality map estimation without additional model training.

Installation

We tested our code in ubuntu 16.04, g++ 8.4.0, cuda 10.1, python 3.8.8, pytorch 1.7.1. A C++ 17 compiler is required to use the Range Asymmetric Numeral System implementation.

  1. Check your g++ version >= 7. If not, please update it first and make sure to use the updated version.

    • $ g++ --version
  2. Set up the python environment (Python 3.8).

  3. Install needed packages.

    • $ pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    • $ pip install -r requirements.txt
    • If some errors occur in installing CompressAI, please install it yourself. It is for the entropy coder.

Dataset

  1. (Training set) Download the following files and decompress them.

    • 2014 Train images [83K/13GB]
    • 2014 Train/Val annotations [241MB]
      • instances_train2014.json
    • 2017 Train images [118K/18GB]
    • 2017 Train/Val annotations [241MB]
      • instances_train2017.json
  2. (Test set) Download Kodak dataset.

  3. Make a directory of structure as follows for the datasets.

├── your_dataset_root
    ├── coco
        |── annotations
            ├── instances_train2014.json
            └── instances_train2017.json
        ├── train2014
        └── train2017
    └── kodak
            ├── 1.png
            ├── ...
  1. Run following command in scripts directory.
    • $ ./prepare.sh your_dataset_root/coco your_dataset_root/kodak
    • trainset_coco.csv and kodak.csv will be created in data directory.

Training

Configuration

We used the same configuration as ./configs/config.yaml to train our model. You can change it as you want. We expect that larger number of training iteration will lead to the better performance.

Train

$ python train.py --config=./configs/config.yaml --name=your_instance_name
The checkpoints of the model will be saved in ./results/your_instance_name/snapshots.
Training for 2M iterations will take about 2-3 weeks on a single GPU like Titan Xp. At least 12GB GPU memory is needed for the default training setting.

Resume from a checkpoint

$ python train.py --resume=./results/your_instance_name/snapshots/your_snapshot_name.pt
By default, the original configuration of the checkpoint ./results/your_instance_name/config.yaml will be used.

Evaluation

$ python eval.py --snapshot=./results/your_instance_name/snapshots/your_snapshot_name.pt --testset=./data/kodak.csv

Final evaluation results

[ Test-1 ] Total: 0.5104 | Real BPP: 0.2362 | BPP: 0.2348 | PSNR: 29.5285 | MS-SSIM: 0.9360 | Aux: 93 | Enc Time: 0.2403s | Dec Time: 0.0356s
[ Test 0 ] Total: 0.2326 | Real BPP: 0.0912 | BPP: 0.0902 | PSNR: 27.1140 | MS-SSIM: 0.8976 | Aux: 93 | Enc Time: 0.2399s | Dec Time: 0.0345s
[ Test 1 ] Total: 0.2971 | Real BPP: 0.1187 | BPP: 0.1176 | PSNR: 27.9824 | MS-SSIM: 0.9159 | Aux: 93 | Enc Time: 0.2460s | Dec Time: 0.0347s
[ Test 2 ] Total: 0.3779 | Real BPP: 0.1559 | BPP: 0.1547 | PSNR: 28.8982 | MS-SSIM: 0.9323 | Aux: 93 | Enc Time: 0.2564s | Dec Time: 0.0370s
[ Test 3 ] Total: 0.4763 | Real BPP: 0.2058 | BPP: 0.2045 | PSNR: 29.9052 | MS-SSIM: 0.9464 | Aux: 93 | Enc Time: 0.2553s | Dec Time: 0.0359s
[ Test 4 ] Total: 0.5956 | Real BPP: 0.2712 | BPP: 0.2697 | PSNR: 30.9739 | MS-SSIM: 0.9582 | Aux: 93 | Enc Time: 0.2548s | Dec Time: 0.0354s
[ Test 5 ] Total: 0.7380 | Real BPP: 0.3558 | BPP: 0.3541 | PSNR: 32.1140 | MS-SSIM: 0.9678 | Aux: 93 | Enc Time: 0.2598s | Dec Time: 0.0358s
[ Test 6 ] Total: 0.9059 | Real BPP: 0.4567 | BPP: 0.4548 | PSNR: 33.2801 | MS-SSIM: 0.9752 | Aux: 93 | Enc Time: 0.2596s | Dec Time: 0.0361s
[ Test 7 ] Total: 1.1050 | Real BPP: 0.5802 | BPP: 0.5780 | PSNR: 34.4822 | MS-SSIM: 0.9811 | Aux: 93 | Enc Time: 0.2590s | Dec Time: 0.0364s
[ Test 8 ] Total: 1.3457 | Real BPP: 0.7121 | BPP: 0.7095 | PSNR: 35.5609 | MS-SSIM: 0.9852 | Aux: 93 | Enc Time: 0.2569s | Dec Time: 0.0367s
[ Test 9 ] Total: 1.6392 | Real BPP: 0.8620 | BPP: 0.8590 | PSNR: 36.5931 | MS-SSIM: 0.9884 | Aux: 93 | Enc Time: 0.2553s | Dec Time: 0.0371s
[ Test10 ] Total: 2.0116 | Real BPP: 1.0179 | BPP: 1.0145 | PSNR: 37.4660 | MS-SSIM: 0.9907 | Aux: 93 | Enc Time: 0.2644s | Dec Time: 0.0376s
[ Test ] Total mean: 0.8841 | Enc Time: 0.2540s | Dec Time: 0.0361s
  • [ TestN ] means to use a uniform quality map of (N/10) value for evaluation.
    • For example, in the case of [ Test8 ], a uniform quality map of 0.8 is used.
  • [ Test-1 ] means to use pre-defined non-uniform quality maps for evaluation.
  • Bpp is the theoretical average bpp calculated by the trained probability model.
  • Real Bpp is the real average bpp for the saved file including quantized latent representations and metadata.
    • All bpps reported in the paper are Real Bpp.
  • Total is the average loss value.

Classification-aware compression

Dataset

We made a test set of ImageNet dataset by sampling 102 categories and choosing 5 images per a category randomly.

  1. Prepare the original ImageNet validation set ILSVRC2012_img_val.
  2. Run following command in scripts directory.
    • $ ./prepare_imagenet.sh your_dataset_root/ILSVRC2012_img_val
    • imagenet_subset.csv will be created in data directory.

Running

$ python classification_aware.py --snapshot=./results/your_instance_name/snapshots/your_snapshot_name.pt
A result plot ./classificatoin_result.png will be generated.

Citation

@inproceedings{song2021variablerate,
  title={Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform}, 
  author={Song, Myungseo and Choi, Jinyoung and Han, Bohyung},
  booktitle={ICCV},
  year={2021}
}
Owner
Myungseo Song
Myungseo Song
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022