Label Hallucination for Few-Shot Classification

Overview

Label Hallucination for Few-Shot Classification

This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classification . If you find this repo useful for your research, please consider citing the paper.

@article{Jian2022LabelHalluc,
    author = {Yiren Jian and Lorenzo Torresani},
    title = {Label Hallucination for Few-shot Classification},
    journal = {AAAI},
    year = {2022}
}
@article{jian2021label,
      title={Label Hallucination for Few-Shot Classification},
      author={Yiren Jian and Lorenzo Torresani},
      journal={arXiv preprint arXiv:2112.03340},
      year={2021}
}

Requirements

This repo was tested with Ubuntu 18.04.5 LTS, Python 3.6, PyTorch 1.4.0, and CUDA 10.1. You will need at least 32GB RAM and 22GB VRAM (i.e. two Nvidia RTX-2080Ti) for running full experiments in this repo.

Download Data

The data we used here is preprocessed by the repo of MetaOptNet, Please find the renamed versions of the files in below link by RFS.

Download and unzip the dataset, put them under data directory.

Embedding Learning

Please follow RFS, SKD and Rizve et al. (or other transfer learning methods) for the embedding learning. RFS provides a Dropbox link for downloading their pre-trained models for miniImageNet.

We provide our pretrained embedding models by [SKD] and [Rizve et al.] at Dropbox. Note that those models are NOT the official release by original authors, and they perform slightly worse than what reported in their papers. Better models could be trained with longer durations and/or by hyper-parameters tuning.

Once finish the embedding training, put the pre-trained models in models_pretrained directory.

Running Our Fine-tuning

To perform 5-way 5-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 5 --n_aug_support 5  --early 200 --print 50 --norm_feat

To perform 5-way 1-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 3 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 5 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 1 --n_aug_support 25 --early 150 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 1 --n_aug_support 25  --early 200 --print 50 --norm_feat

Reading the outputs

400it RFS/SKD/baseline acc: 0.7200 for this episode
==> training...
Epoch: [1][100/288]    Time 0.121 (0.115)    Data 0.001 (0.003)    ..
Epoch: [1][200/288]    Time 0.112 (0.114)    Data 0.001 (0.002)    ...
epoch 400, total time 32.77
acc1: 0.6567, std1: 0.0076, acc2: 0.6820, std2: 0.0080,
epochs: 1, acc2: 0.6400, std2: 0.0080
...

The above is an example print-out for FC100 5-shot. acc1: 0.6567, std1: 0.0076 is the accuracy and the deviation of LinearRegression method with fixed embeddings (used in RFS and SKD). acc2: 0.6820, std2: 0.0080 is the result by our method.

Contacts

For any questions, please contact authors.

Acknowlegements

Thanks to RFS, for the preliminary implementations.

Owner
Yiren Jian
PhD student in Computer Vision and NLP
Yiren Jian
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022