PyTorch implementation of probabilistic deep forecast applied to air quality.

Overview

Probabilistic Deep Forecast

PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting arXiv.

Introduction

In this work, we develop a set of deep probabilistic models for air quality forecasting that quantify both aleatoric and epistemic uncertainties and study how to represent and manipulate their predictive uncertainties. In particular: * We conduct a broad empirical comparison and exploratory assessment of state-of-the-art techniques in deep probabilistic learning applied to air quality forecasting. Through exhaustive experiments, we describe training these models and evaluating their predictive uncertainties using various metrics for regression and classification tasks. * We improve uncertainty estimation using adversarial training to smooth the conditional output distribution locally around training data points. * We apply uncertainty-aware models that exploit the temporal and spatial correlation inherent in air quality data using recurrent and graph neural networks. * We introduce a new state-of-the-art example for air quality forecasting by defining the problem setup and selecting proper input features and models.

drawing
Decision score as a function of normalized aleatoric and epistemic confidence thresholds . See animation video here

Installation

install probabilistic_forecast' locally in “editable” mode ( any changes to the original package would reflect directly in your environment, os you don't have to re-insall the package every time you make some changes):

pip install -e .

Use the configuration file equirements.txt to the install the required packages to run this project.

File Structure

.
├── probabilistic_forecast/
│   ├── bnn.py (class definition for the Bayesian neural networks model)
│   ├── ensemble.py (class definition for the deep ensemble model)
│   ├── gnn_mc.py (class definition for the graph neural network model with MC dropout)
│   ├── lstm_mc.py (class definition for the LSTM model with MC dropout)
│   ├── nn_mc.py (class definition for the standard neural network model with MC droput)
│   ├── nn_standard.py (class definition for the standard neural network model without MC dropout)
│   ├── swag.py (class definition for the SWAG model)
│   └── utils/
│       ├── data_utils.py (utility functions for data loading and pre-processing)
│       ├── gnn_utils.py (utility functions for GNN)
│       ├── plot_utils.py (utility functions for plotting training and evaluation results)
│       ├── swag_utils.py  (utility functions for SWAG)
│       └── torch_utils.py (utility functions for torch dataloader, checking if CUDA is available)
├── dataset/
│   ├── air_quality_measurements.csv (dataset of air quality measurements)
│   ├── street_cleaning.csv  (dataset of air street cleaning records)
│   ├── traffic.csv (dataset of traffic volumes)
│   ├── weather.csv  (dataset of weather observations)
│   └── visualize_data.py  (script to visualize all dataset)
├── main.py (main function with argument parsing to load data, build a model and evaluate (or train))
├── tests/
│   └── confidence_reliability.py (script to evaluate the reliability of confidence estimates of pretrained models)
│   └── epistemic_vs_aleatoric.py (script to show the impact of quantifying both epistemic and aleatoric uncertainties)
├── plots/ (foler containing all evaluation plots)
├── pretrained/ (foler containing pretrained models and training curves plots)
├── evaluate_all_models.sh (bash script for evaluating all models at once)
└── train_all_models.sh (bash script for training all models at once)

Evaluating Pretrained Models

Evaluate a pretrained model, for example:

python main.py --model=SWAG --task=regression --mode=evaluate  --adversarial_training

or evaluate all models:

bash evaluate_all_models.sh
drawing
PM-value regression using Graph Neural Network with MC dropout

Threshold-exceedance prediction

drawing
Threshold-exceedance prediction using Bayesian neural network (BNN)

Confidence Reliability

To evaluate the confidence reliability of the considered probabilistic models, run the following command:

python tests/confidence_reliability.py

It will generate the following plots:

drawing
Confidence reliability of probabilistic models in PM-value regression task in all monitoring stations.
drawing
Confidence reliability of probabilistic models in threshold-exceedance prediction task in all monitoring stations.

Epistemic and aleatoric uncertainties in decision making

To evaluate the impact of quantifying both epistemic and aleatoric uncertainties in decision making, run the following command:

python tests/epistemic_vs_aleatoric.py

It will generate the following plots:

Decision score in a non-probabilistic model
as a function of only aleatoric confidence.
Decision score in a probabilistic model as a function
of both epistemic and aleatoric confidences.
drawing drawing

It will also generate an .vtp file, which can be used to generate a 3D plot with detailed rendering and lighting in ParaView.

Training Models

Train a single model, for example:

python main.py --model=SWAG --task=regression --mode=train --n_epochs=3000 --adversarial_training

or train all models:

bash train_all_models.sh
drawing
Learning curve of training a BNNs model to forecast PM-values. Left: negative log-likelihood loss,
Center: KL loss estimated using MC sampling, Right: learning rate of exponential decay.

Dataset

Run the following command to visualize all data

python dataset/visualize_data.py

It will generate plots in the "dataset folder". For example:

drawing
Air quality level over two years in one representative monitoring station (Elgeseter) in Trondheim, Norway

Attribution

Owner
Abdulmajid Murad
PhD Student, Faculty of Information Technology and Electrical Engineering, NTNU
Abdulmajid Murad
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Matthew Colbrook 1 Apr 08, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022