MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Related tags

Deep LearningMoCoPnet
Overview

Deformable 3D Convolution for Video Super-Resolution

Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet). [PDF]

Overview


Requirements

  • Python 3
  • pytorch >= 1.6
  • numpy, PIL

Datasets

Training & test datasets

Download SAITD dataset.

SAITD dataset is a large-scale high-quality semi-synthetic dataset of infrared small target. We employ the 1st-50th sequences with target annotations as the test datasets and the remaining 300 sequences as the training datasets.

Download Hui and Anti-UAV.

Hui and Anti-UAV datasets are used as the test datasets to test the robustness of our MoCoPnet to real scenes. In Anti-UAV dataset, only the sequences with infrared small target (i.e., The target size is less than 0.12% of the image size) are selected as the test set (21 sequences in total). Note that, we only use the first 100 images of each sequence for test to balance computational/time cost and generalization performance.

For simplicity, you can also Download the test datasets in https://pan.baidu.com/s/1oobhklwIChvNJIBpTcdQRQ?pwd=1113 and put the folder in code/data.

Data format:

  1. The training dataset is in code/data/train/SAITD.
train
  └── SAITD
       └── 1
              ├── 0.png
              ├── 1.png
              ├── ...
       └── 2
              ├── 00001
              ├── 00002
              ├── ...		
       ...
  1. The test datasets are in code/data/test as below:
 test
  └── dataset_1
         └── scene_1
              ├── 0.png  
              ├── 1.png  
              ├── ...
              └── 100.png    
               
         ├── ...		  
         └── scene_M
  ├── ...    
  └── dataset_N      

Results

Quantitative Results of SR performance

Table 1. PSNR/SSIM achieved by different methods.

Table 2. SNR and CR results of different methods achieved on super-resolved LR images and super-resolved HR images.

Qualitative Results of SR performance

Figure 1. Visual results of different SR methods on LR images for 4x SR.

Figure 2. Visual results of different SR methods on LR images for 4x SR.

Quantitative Results of detection

Table 3. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved LR images.

Table 4. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved HR images.

Figure 3. ROC results of Tophat, ILCM and IPI achieved on super-resolved LR images.

Figure 4. ROC results of Tophat, ILCM and IPI achieved on super-resolved HR images.

Qualitative Results of detection

Figure 5. Qualitative results of super-resolved LR image and detection results.

Figure 6. Qualitative results of super-resolved HR image and detection results.

Citiation

@article{MoCoPnet,
  author = {Ying, Xinyi and Wang, Yingqian and Wang, Longguang and Sheng, Weidong and Liu, Li and Lin, Zaipin and Zhou, Shilin},
  title = {MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution},
  journal={arXiv preprint arXiv:2201.01014},
  year = {2020},
}

Contact

Please contact us at [email protected] for any question.

Owner
Xinyi Ying
Her current research interests focus on image & video super-resolution and small target detection.
Xinyi Ying
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022