Background-Click Supervision for Temporal Action Localization

Related tags

Deep LearningBackTAL
Overview

Background-Click Supervision for Temporal Action Localization

This repository is the official implementation of BackTAL. In this work, we study the temporal action localization under background-click supervision, and find the performance bottleneck of the existing approaches mainly comes from the background errors. Thus, we convert existing action-click supervision to the background-click supervision and develop a novel method, called BackTAL. Extensive experiments on three benchmarks are conducted, which demonstrate the high performance of the established BackTAL and the rationality of the proposed background-click supervision.

Illustrating the architecture of the proposed BackTAL

Requirements

To install requirements:

conda env create -f environment.yaml

Data Preparation

Download

Download pre-extracted I3D features of Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back.

Please ensure the data structure is as below
├── data
   └── Thumos14
       ├── val
           ├── video_validation_0000051.npz
           ├── video_validation_0000052.npz
           └── ...
       └── test
           ├── video_test_0000004.npz
           ├── video_test_0000006.npz
           └── ...
   └── ActivityNet1.2
       ├── training
           ├── v___dXUJsj3yo.npz
           ├── v___wPHayoMgw.npz
           └── ...
       └── validation
           ├── v__3I4nm2zF5Y.npz
           ├── v__8KsVaJLOYI.npz
           └── ...
   └── HACS
       ├── training
           ├── v_0095rqic1n8.npz
           ├── v_62VWugDz1MY.npz
           └── ...
       └── validation
           ├── v_008gY2B8Pf4.npz
           ├── v_00BcXeG1gC0.npz
           └── ...
     

Background-Click Annotations

The raw annotations of THUMOS14 dataset are under directory './data/THUMOS14/human_anns'.

Evaluation

Pre-trained Models

You can download checkpoints for Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back. These models are trained on Thumos14, ActivityNet1.2 or HACS using the configuration file under the directory "./experiments/". Please put these checkpoints under directory "./checkpoints".

Evaluation

Before running the code, please activate the conda environment.

To evaluate BackTAL model on Thumos14, run:

cd ./tools
python eval.py -dataset THUMOS14 -weight_file ../checkpoints/THUMOS14.pth

To evaluate BackTAL model on ActivityNet1.2, run:

cd ./tools
python eval.py -dataset ActivityNet1.2 -weight_file ../checkpoints/ActivityNet1.2.pth

To evaluate BackTAL model on HACS, run:

cd ./tools
python eval.py -dataset HACS -weight_file ../checkpoints/HACS.pth

Results

Our model achieves the following performance:

THUMOS14

threshold 0.3 0.4 0.5 0.6 0.7
mAP 54.4 45.5 36.3 26.2 14.8

ActivityNet v1.2

threshold average-mAP 0.50 0.75 0.95
mAP 27.0 41.5 27.3 4.7

HACS

threshold average-mAP 0.50 0.75 0.95
mAP 20.0 31.5 19.5 4.7

Training

To train the BackTAL model on THUMOS14 dataset, please run this command:

cd ./tools
python train.py -dataset THUMOS14

To train the BackTAL model on ActivityNet v1.2 dataset, please run this command:

cd ./tools
python train.py -dataset ActivityNet1.2

To train the BackTAL model on HACS dataset, please run this command:

cd ./tools
python train.py -dataset HACS

Citing BackTAL

@article{yang2021background,
  title={Background-Click Supervision for Temporal Action Localization},
  author={Yang, Le and Han, Junwei and Zhao, Tao and Lin, Tianwei and Zhang, Dingwen and Chen, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

For any discussions, please contact [email protected].

Owner
LeYang
LeYang
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022