The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

Overview

SuperGen

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

Requirements

Before running, you need to first install the required packages by typing following commands (Using a virtual environment is recommended):

pip3 install -r requirements.txt

Overview

SuperGen is a Supervision Generation method for zero-shot learning on NLU tasks. Instead of training on task-specific data, SuperGen generates training data guided by label-descriptive prompts with a unidirectional language model and fine-tunes another language model on the generated data.

Training and Test Data: Our method does not use any task-specific data (e.g., original training set). We provide our generated training set and original dev set (used as the test set) of each GLUE task under the data directory: train.json files are the generated training set (after data selection); test.tsv files are the original GLUE dev set (used as the test set for evaluation purpose).
Pretraining Corpus: We provide the processed pretraining corpus (Wikipedia and OpenWebText) for generating training data for sequence-pair tasks under the pretrain_corpus directory; see the README file there for details.

Generating Training Data

The generated training set used in the paper are provided as train.json files under each task directory; you should be able to obtain very similar generated data by following the steps below:

Data Generation: The entry script for generating training data for GLUE tasks is gen_train_data.py. The basic usage is

python gen_train_data.py --task $TASK --label $LABEL --save_dir $SAVE_DIR --num_gen $NUM_GEN

You can generate training data of each label either by setting individual label name $LABEL one at a time or by setting $LABEL=all to generate data for all labels (this will still be done sequentially). You may want to set $NUM_GEN to be larger than the desired training set size, as only those texts with the highest generated probability will be used to form the final training set.

Data Selection: After generating the training data, the final training set can be constructed by running the following:

python src/gen_utils.py --task $TASK --num_select_samples $NUM_SELECT \
                        --read_dir $SAVE_DIR --save_dir $DATA_DIR

Example: We provide an example script run_gen.sh that includes the entire generation process for all GLUE tasks under the setting described in the paper.

Fine-Tuning

The entry script for fine-tuning on generated data is finetune.py. The basic usage is

python finetune.py \
    --task_name $TASK \
    --data_dir data/$TASK \
    --overwrite_output_dir \
    --do_train \
    --do_predict \
    --smooth $SM \
    --momentum $MOMENT \
    --eval_steps $INTERVAL \
    --threshold $TH \
    --reg_weight $REG \
    --temp_ensemble_rampup $RAMP \
    --model_name_or_path $MODEL \
    --max_seq_length 128 \
    --first_sent_limit 100 \
    --per_device_train_batch_size $BS \
    --learning_rate $LR \
    --num_train_epochs 3 \
    --output_dir $OUT_DIR \
    --template $TEMPLATE \
    --mapping $MAPPING \
    --warmup_ratio 0.1 \
    --save_at_last \

Example: We provide an example script run_finetune.sh with command line arguments set up for all GLUE tasks under the setting described in the paper.

Results: When using the same prompt-based fine-tuning pipeline (with the same manual prompts and label words), zero-shot SuperGen even achieves better performance than few-shot LM-BFF using 32 annotated samples per class across seven GLUE classification tasks:

Method MNLI-m/mm QQP QNLI SST-2 CoLA RTE MRPC AVG
LM-BFF 32-Sample Few-Shot 68.3/70.5 65.5 64.5 92.7 9.3 69.1 74.5 63.6
SuperGen Zero-Shot 72.3/73.8 66.1 73.3 92.8 32.7 65.3 82.2 69.4

Acknowledgement

Some scripts in this repository are adapted from COCO-LM (for COCO-LM model), LM-BFF (for prompt-based fine-tuning) and huggingface transformers (for text generation and GLUE processor/trainer).

Citations

Please cite the following paper if you find the code helpful for your research.

@article{meng2022generating,
  title={Generating Training Data with Language Models: Towards Zero-Shot Language Understanding},
  author={Meng, Yu and Huang, Jiaxin and Zhang, Yu and Han, Jiawei},
  journal={arXiv preprint arXiv:2202.04538},
  year={2022}
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022