An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Related tags

Deep LearningUformer
Overview

Uformer: A General U-Shaped Transformer for Image Restoration

Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu

PWC PWC

Paper: https://arxiv.org/abs/2106.03106

Update:

  • 2021.08.19 Release a pre-trained model(Uformer32)! Add a script for FLOP/GMAC calculation.
  • 2021.07.29 Add a script for testing the pre-trained model on the arbitrary-resolution images.

In this paper, we present Uformer, an effective and efficient Transformer-based architecture, in which we build a hierarchical encoder-decoder network using the Transformer block for image restoration. Uformer has two core designs to make it suitable for this task. The first key element is a local-enhanced window Transformer block, where we use non-overlapping window-based self-attention to reduce the computational requirement and employ the depth-wise convolution in the feed-forward network to further improve its potential for capturing local context. The second key element is that we explore three skip-connection schemes to effectively deliver information from the encoder to the decoder. Powered by these two designs, Uformer enjoys a high capability for capturing useful dependencies for image restoration. Extensive experiments on several image restoration tasks demonstrate the superiority of Uformer, including image denoising, deraining, deblurring and demoireing. We expect that our work will encourage further research to explore Transformer-based architectures for low-level vision tasks.

Uformer

Details

Package dependencies

The project is built with PyTorch 1.7.1, Python3.7, CUDA10.1. For package dependencies, you can install them by:

pip3 install -r requirements.txt

Pretrained model

Data preparation

Denoising

For training data of SIDD, you can download the SIDD-Medium dataset from the official url. Then generate training patches for training by:

python3 generate_patches_SIDD.py --src_dir ../SIDD_Medium_Srgb/Data --tar_dir ../datasets/denoising/sidd/train

For evaluation, we use the same evaluation data as here, and put it into the dir ../datasets/denoising/sidd/val.

Training

Denoising

To train Uformer32(embed_dim=32) on SIDD, we use 2 V100 GPUs and run for 250 epochs:

python3 ./train.py --arch Uformer --batch_size 32 --gpu '0,1' \
    --train_ps 128 --train_dir ../datasets/denoising/sidd/train --env 32_0705_1 \
    --val_dir ../datasets/denoising/sidd/val --embed_dim 32 --warmup

More configuration can be founded in train.sh.

Evaluation

Denoising

To evaluate Uformer32 on SIDD, you can run:

python3 ./test.py --arch Uformer --batch_size 1 --gpu '0' \
    --input_dir ../datasets/denoising/sidd/val --result_dir YOUR_RESULT_DIR \
    --weights YOUR_PRETRAINED_MODEL_PATH --embed_dim 32 

Computational Cost

We provide a simple script to calculate the flops by ourselves, a simple script has been added in model.py. You can change the configuration and run it via:

python3 model.py

The manual calculation of GMacs in this repo differs slightly from the main paper, but they do not influence the conclusion. We will correct the paper later.

Citation

If you find this project useful in your research, please consider citing:

@article{wang2021uformer,
	title={Uformer: A General U-Shaped Transformer for Image Restoration},
	author={Wang, Zhendong and Cun, Xiaodong and Bao, Jianmin and Liu, Jianzhuang},
	journal={arXiv preprint 2106.03106},
	year={2021}
}

Acknowledgement

This code borrows heavily from MIRNet and SwinTransformer.

Contact

Please contact us if there is any question or suggestion(Zhendong Wang [email protected], Xiaodong Cun [email protected]).

Owner
Zhendong Wang
Deep learning, Computer Vision, Low-level Vision, Image Generation.
Zhendong Wang
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023