Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

Overview

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models".

  • "test_suite_cases.csv" contains the full test suite (3,728 cases in 29 functional tests).
  • "test_suite_annotations.csv" provides detailed annotation outcomes for each case in the test suite.
  • The corresponding "all_" files cover all 3,901 cases that were initially generated, from which 173 were excluded from the test suite due to fewer than four out five annotators agreeing with our gold standard label.
  • "template_placeholders.csv" contains the tokens that the placeholders in the case templates are replaced with for generating the test cases.

"test_suite_cases.csv" and "all_cases.csv"

functionality The shorthand for the functionality tested by the test case.

case_id The unique ID of the test case (assigned to each of the 3,901 cases we initially generated)

test_case The text of the test case.

label_gold The gold standard label (hateful/non-hateful) of the test case. All test cases within a given functionality have the same gold standard label.

target_ident Where applicable, the protected group targeted or referenced by the test case. We cover seven protected groups in the test suite: women, trans people, gay people, black people, disabled people, Muslims and immigrants.

direction For hateful cases, the binary secondary label indicating whether they are directed at an individual as part of a protected group or aimed at the group in general.

focus_words Where applicable, the key word or phrase in a given test case (e.g. "cut their throats").

focus_lemma Where applicable, the corresponding lemma (e.g. "cut sb. throat").

ref_case_id For hateful cases, where applicable, the ID of the simpler hateful case which was perturbed to generate them. For non-hateful cases, where applicable, the ID of the hateful case which is contrasted.

ref_templ_id The equivalent, but for template IDs.

templ_id The unique ID of the template from which the test case was generated (assigned to each of the 866 cases and templates from which we generated the 3,901 initial cases).


"test_suite_annotations.csv" and "all_annotations.csv"

functionality, case_id, templ_id, test_case, label_gold See above.

label_[1:10] The label provided for the test case by a given annotator. We recruited and trained a team of ten annotators. Each test case was annotated by exactly five annotators.

count_label_h The number of annotators who labeled a given test case as hateful.

count_label_nh The number of annotators who labeled a given test case as non-hateful.

label_annot_maj The majority label.

Owner
Paul Röttger
DPhil Student in Social Data Science at the University of Oxford. Interested in NLP and hate speech research.
Paul Röttger
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022