AOT (Associating Objects with Transformers) in PyTorch

Overview

AOT (Associating Objects with Transformers) in PyTorch

A modular reference PyTorch implementation of Associating Objects with Transformers for Video Object Segmentation (NIPS 2021). [paper]

alt text

alt text

Highlights

  • High performance: up to 85.5% (R50-AOTL) on YouTube-VOS 2018 and 82.1% (SwinB-AOTL) on DAVIS-2017 Test-dev under standard settings.
  • High efficiency: up to 51fps (AOTT) on DAVIS-2017 (480p) even with 10 objects and 41fps on YouTube-VOS (1.3x480p). AOT can process multiple objects (less than a pre-defined number, 10 in default) as efficiently as processing a single object. This project also supports inferring any number of objects together within a video by automatic separation and aggregation.
  • Multi-GPU training and inference
  • Mixed precision training and inference
  • Test-time augmentation: multi-scale and flipping augmentations are supported.

TODO

  • Code documentation
  • Demo tool
  • Adding your own dataset

Requirements

  • Python3
  • pytorch >= 1.7.0 and torchvision
  • opencv-python
  • Pillow

Optional (for better efficiency):

  • Pytorch Correlation (recommend to install from source instead of using pip)

Demo

Coming

Model Zoo and Results

Pre-trained models and corresponding results reproduced by this project can be found in MODEL_ZOO.md.

Getting Started

  1. Prepare datasets:

    Please follow the below instruction to prepare datasets in each correspondding folder.

    • Static

      datasets/Static: pre-training dataset with static images. A guidance can be found in AFB-URR.

    • YouTube-VOS

      A commonly-used large-scale VOS dataset.

      datasets/YTB/2019: version 2019, download link. train is required for training. valid (6fps) and valid_all_frames (30fps, optional) are used for evaluation.

      datasets/YTB/2018: version 2018, download link. Only valid (6fps) and valid_all_frames (30fps, optional) are required for this project and used for evaluation.

    • DAVIS

      A commonly-used small-scale VOS dataset.

      datasets/DAVIS: TrainVal (480p) contains both the training and validation split. Test-Dev (480p) contains the Test-dev split. The full-resolution version is also supported for training and evluation but not required.

  2. Prepare ImageNet pre-trained encoders

    Select and download below checkpoints into pretrain_models:

    The current default training configs are not optimized for encoders larger than ResNet-50. If you want to use larger encoders, we recommond to early stop the main-training stage at 80,000 iteration (100,000 in default) to avoid over-fitting on the seen classes of YouTube-VOS.

  3. Training and Evaluation

    The example script will train AOTT with 2 stages using 4 GPUs and auto-mixed precision (--amp). The first stage is a pre-training stage using Static dataset, and the second stage is main-training stage, which uses both YouTube-VOS 2019 train and DAVIS-2017 train for training, resulting in a model can generalize to different domains (YouTube-VOS and DAVIS) and different frame rates (6fps, 24fps, and 30fps).

    Notably, you can use only the YouTube-VOS 2019 train split in the second stage by changing pre_ytb_dav to pre_ytb, which leads to better YouTube-VOS performance on unseen classes. Besides, if you don't want to do the first stage, you can start the training from stage ytb, but the performance will drop about 1~2% absolutely.

    After the training is finished, the example script will evaluate the model on YouTube-VOS and DAVIS, and the results will be packed into Zip files. For calculating scores, please use offical YouTube-VOS servers (2018 server and 2019 server) and offical DAVIS toolkit.

Adding your own dataset

Coming

Troubleshooting

Waiting

Citations

Please consider citing the related paper(s) in your publications if it helps your research.

@inproceedings{yang2021aot,
  title={Associating Objects with Transformers for Video Object Segmentation},
  author={Yang, Zongxin and Wei, Yunchao and Yang, Yi},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This project is released under the BSD-3-Clause license. See LICENSE for additional details.

Owner
CS graduate student, Zhejiang University.
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

πŸ“ˆ Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la prΓ©sen

4 Mar 15, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021