Bayesian Neural Networks in PyTorch

Overview

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of samples. Our method is described in the paper (UAI2021): "Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks".

In addition, we provide an implementation framework to make your deterministic network Bayesian in PyTorch.

If you like our work, please click on a star. If you use our code in your research projects, please cite our paper above.

Bayesify your Neural Network

There are 3 main files which help you to Bayesify your deterministic network:

  1. bayes_layers.py - file contains a bayesian implementation of convolution(1d, 2d, 3d, transpose) and linear layers, according to approx posterior from Location-Scale family, i.e. which has 2 parameters mu and sigma. This file contains general definition, independent of specific distribution, as long as distribution contains 2 parameters mu and sigma. It uses forward method defined in vi_posteriors.py file. One of the main arguments for redefined classes is approx_post, which defined which posterior class to use from vi_posteriors.py. Please, specify this name same way as defined class in vi_posteriors.py. For example, if vi_posteriors.py contains class Gaus, then approx_post='Gaus'.

  2. vi_posteriors.py - file describes forward method, including kl term, for different approximate posterior distributions. Current implementation contains following disutributions:

  • Radial
  • Gaus

If you would like to implement your own class of distrubtions, in vi_posteriors.py copy one of defined classes and redefine following functions: forward(obj, x, fun=""), get_kl(obj, n_mc_iter, device).

It also contains usefull Utils class which provides

  • definition of loss functions:
    • get_loss_categorical
    • get_loss_normal,
  • different beta coefficients: get_beta for KL term and
  • allows to turn on/off computing the KL term, with function set_compute_kl. this is useful, when you perform testing/evaluation, and kl term is not required to be computed. In that case it accelerates computations.

Below is an example to bayesify your own network. Note the forward method, which handles situations if a layer is not of a Bayesian type, and thus, does not return kl term, e.g. ReLU(x).

import bayes_layers as bl # important for defining bayesian layers
class YourBayesNet(nn.Module):
    def __init__(self, num_classes, in_channels, 
                 **bayes_args):
        super(YourBayesNet, self).__init__()
        self.conv1 = bl.Conv2d(in_channels, 64,
                               kernel_size=11, stride=4,
                               padding=5,
                               **bayes_args)
        self.classifier = bl.Linear(1*1*128,
                                    num_classes,
                                    **bayes_args)
        self.layers = [self.conv1, nn.ReLU(), self.classifier]
        
    def forward(self, x):
        kl = 0
        for layer in self.layers:
            tmp = layer(x)
            if isinstance(tmp, tuple):
                x, kl_ = tmp
                kl += kl_
            else:
                x = tmp

        x = x.view(x.size(0), -1)
        logits, _kl = self.classifier.forward(x)
        kl += _kl
        
        return logits, kl

Then later in the main file during training, you can either use one of the loss functions, defined in utils as following:

output, kl = model(inputs)
kl = kl.mean()  # if several gpus are used to split minibatch

loss, _ = vi.Utils.get_loss_categorical(kl, output, targets, beta=beta) 
#loss, _ = vi.Utils.get_loss_normal(kl, output, targets, beta=beta) 
loss.backward()

or design your own, e.g.

loss = kl_coef*kl - loglikelihood
loss.backward()
  1. uncertainty_estimate.py - file describes set of functions to perform uncertainty estimation, e.g.
  • get_prediction_class - function which return the most common class in iterations
  • summary_class - function creates a summary file with statistics

Current implementation of networks for different problems

Classification

Script bayesian_dnn_class/main.py is the main executable code and all standard DNN models are located in bayesian_dnn_class/models, and are:

  • AlexNet
  • Fully Connected
  • DenseNet
  • ResNet
  • VGG
Owner
Jurijs Nazarovs
PhD student in statistics at the UW-Madison.
Jurijs Nazarovs
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022