Bayesian Neural Networks in PyTorch

Overview

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of samples. Our method is described in the paper (UAI2021): "Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks".

In addition, we provide an implementation framework to make your deterministic network Bayesian in PyTorch.

If you like our work, please click on a star. If you use our code in your research projects, please cite our paper above.

Bayesify your Neural Network

There are 3 main files which help you to Bayesify your deterministic network:

  1. bayes_layers.py - file contains a bayesian implementation of convolution(1d, 2d, 3d, transpose) and linear layers, according to approx posterior from Location-Scale family, i.e. which has 2 parameters mu and sigma. This file contains general definition, independent of specific distribution, as long as distribution contains 2 parameters mu and sigma. It uses forward method defined in vi_posteriors.py file. One of the main arguments for redefined classes is approx_post, which defined which posterior class to use from vi_posteriors.py. Please, specify this name same way as defined class in vi_posteriors.py. For example, if vi_posteriors.py contains class Gaus, then approx_post='Gaus'.

  2. vi_posteriors.py - file describes forward method, including kl term, for different approximate posterior distributions. Current implementation contains following disutributions:

  • Radial
  • Gaus

If you would like to implement your own class of distrubtions, in vi_posteriors.py copy one of defined classes and redefine following functions: forward(obj, x, fun=""), get_kl(obj, n_mc_iter, device).

It also contains usefull Utils class which provides

  • definition of loss functions:
    • get_loss_categorical
    • get_loss_normal,
  • different beta coefficients: get_beta for KL term and
  • allows to turn on/off computing the KL term, with function set_compute_kl. this is useful, when you perform testing/evaluation, and kl term is not required to be computed. In that case it accelerates computations.

Below is an example to bayesify your own network. Note the forward method, which handles situations if a layer is not of a Bayesian type, and thus, does not return kl term, e.g. ReLU(x).

import bayes_layers as bl # important for defining bayesian layers
class YourBayesNet(nn.Module):
    def __init__(self, num_classes, in_channels, 
                 **bayes_args):
        super(YourBayesNet, self).__init__()
        self.conv1 = bl.Conv2d(in_channels, 64,
                               kernel_size=11, stride=4,
                               padding=5,
                               **bayes_args)
        self.classifier = bl.Linear(1*1*128,
                                    num_classes,
                                    **bayes_args)
        self.layers = [self.conv1, nn.ReLU(), self.classifier]
        
    def forward(self, x):
        kl = 0
        for layer in self.layers:
            tmp = layer(x)
            if isinstance(tmp, tuple):
                x, kl_ = tmp
                kl += kl_
            else:
                x = tmp

        x = x.view(x.size(0), -1)
        logits, _kl = self.classifier.forward(x)
        kl += _kl
        
        return logits, kl

Then later in the main file during training, you can either use one of the loss functions, defined in utils as following:

output, kl = model(inputs)
kl = kl.mean()  # if several gpus are used to split minibatch

loss, _ = vi.Utils.get_loss_categorical(kl, output, targets, beta=beta) 
#loss, _ = vi.Utils.get_loss_normal(kl, output, targets, beta=beta) 
loss.backward()

or design your own, e.g.

loss = kl_coef*kl - loglikelihood
loss.backward()
  1. uncertainty_estimate.py - file describes set of functions to perform uncertainty estimation, e.g.
  • get_prediction_class - function which return the most common class in iterations
  • summary_class - function creates a summary file with statistics

Current implementation of networks for different problems

Classification

Script bayesian_dnn_class/main.py is the main executable code and all standard DNN models are located in bayesian_dnn_class/models, and are:

  • AlexNet
  • Fully Connected
  • DenseNet
  • ResNet
  • VGG
Owner
Jurijs Nazarovs
PhD student in statistics at the UW-Madison.
Jurijs Nazarovs
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022