This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Related tags

Deep LearningT3A
Overview

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization

This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight). This codebase is mainly based on DomainBed, with following modifications:

  • enable to use various backbone networks including Big Transfer (BiT), Vision Transformers (ViT, DeiT, HViT), and MLP-Mixer.
  • enable to test test-time adaptation method (T3A and Tent).

Installation

CUDA/Python

git clone [email protected]:matsuolab/Domainbed_contrib.git
cd Domainbed_contrib/docker
docker build -t {image_name} .
docker run -it -h `hostname` --runtime=nvidia -v /path/to/Domainbed_contrib /path/to/anyware --shm-size=40gb --name {container_name} {image_name}

Python libralies

We use pipenv for package management.

cd /path/to/Domainbed_contrib
pip install pipenv
pipenv install
pipenv shell
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html

Quick start

(1) Downlload the datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path --dataset pacs

Note: change --dataset pacs for downloading other datasets (e.g., vlcs, office_home, terra_incognita).

(2) Train a model on source domains

python -m domainbed.scripts.train\
       --data_dir /my/datasets/path\
       --output_dir /my/pretrain/path\
       --algorithm ERM\
       --dataset PACS\
       --hparams "{\"backbone\": \"resnet50\"}" 

This scripts will produce new directory /my/pretrain/path, which include the full training log.

Note: change --dataset PACS for training on other datasets (e.g., VLCS, OfficeHome, TerraIncognita).

Note: change --hparams "{\"backbone\": \"resnet50\"}" for using other backbones (e.g., resnet18, ViT-B16, HViT).

(3) Evaluate model with test time adaptation (Table 1, Table 2, Figure 2)

python -m domainbed.scripts.unsupervised_adaptation\
       --input_dir=/my/pretrain/path\
       --adapt_algorithm=T3A

This scripts will produce a new file in /my/pretrain/path, whose name is results_{adapt_algorithm}.jsonl.

Note: change --adapt_algorithm=T3A for using other test time adaptation methods (T3A, Tent, or TentClf).

(4) Evaluate model with fine-tuning classifier(Figure 1)

python -m domainbed.scripts.supervised_adaptation\
       --input_dir=/my/pretrain/path\
       --ft_mode=clf

This scripts will produce a new file in /my/pretrain/path, whose name is results_{ft_mode}.jsonl.

Available backbones

  • resnet18
  • resnet50
  • BiT-M-R50x3
  • BiT-M-R101x3
  • BiT-M-R152x2
  • ViT-B16
  • ViT-L16
  • DeiT
  • Hybrid ViT (HViT)
  • MLP-Mixer (Mixer-L16)

Reproducing results

Table 1 and Figure 2 (Tuned ERM and CORAL)

You can use scripts/hparam_search.sh. Specifically, for each dataset and base algorithm, you can just type a following command.

sh scripts/hparam_search.sh resnet50 PACS ERM

Note that, it automatically starts 240 jobs, and take many times to finish.

Table 2 and Figure 1 (ERM with various backbone)

You can use scripts/launch.sh. Specifically, for each backbone, you can just type following three commands.

sh scripts/launch.sh pretrain resnet50 10 3 local
sh scripts/launch.sh sup resnet50 10 3 local
sh scripts/launch.sh unsup resnet50 10 3 local

Other results

For table 1, we used scores reported by In Search of Lost Domain Generalization. Full results for the reported scores in LaTeX format available here. Note: We only used scores for VLCS, PACS, OfficeHome, and TerraIncognita. We used the resutls with IIDAccuracySelectionMethod.

License

This source code is released under the MIT license, included here.

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022