Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

Overview

fastquant 🤓

Build Status Code style: black License: MIT Downloads

Bringing backtesting to the mainstream

fastquant allows you to easily backtest investment strategies with as few as 3 lines of python code. Its goal is to promote data driven investments by making quantitative analysis in finance accessible to everyone.

To do this type of analysis without coding, you can also try out Hawksight, which was just recently launched! 😄

If you want to interact with us directly, you can also reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Features

  1. Easily access historical stock data
  2. Backtest and optimize trading strategies with only 3 lines of code

* - Both Yahoo Finance and Philippine stock data data are accessible straight from fastquant

Check out our blog posts in the fastquant website and this intro article on Medium!

Installation

Python

pip install fastquant
or
python -m pip install fastquant

Get stock data

All symbols from Yahoo Finance and Philippine Stock Exchange (PSE) are accessible via get_stock_data.

Python

from fastquant import get_stock_data
df = get_stock_data("JFC", "2018-01-01", "2019-01-01")
print(df.head())

#           dt  close
#   2019-01-01  293.0
#   2019-01-02  292.0
#   2019-01-03  309.0
#   2019-01-06  323.0
#   2019-01-07  321.0

Get crypto data

The data is pulled from Binance, and all the available tickers are found here.

Python

from fastquant import get_crypto_data
crypto = get_crypto_data("BTC/USDT", "2018-12-01", "2019-12-31")
crypto.head()

#             open    high     low     close    volume
# dt                                                          
# 2018-12-01  4041.27  4299.99  3963.01  4190.02  44840.073481
# 2018-12-02  4190.98  4312.99  4103.04  4161.01  38912.154790
# 2018-12-03  4160.55  4179.00  3827.00  3884.01  49094.369163
# 2018-12-04  3884.76  4085.00  3781.00  3951.64  48489.551613
# 2018-12-05  3950.98  3970.00  3745.00  3769.84  44004.799448

Backtest trading strategies

Simple Moving Average Crossover (15 day MA vs 40 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
backtest('smac', df, fast_period=15, slow_period=40)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 102272.90

Want to do this without coding at all?

If you want to make this kind of analysis even more simple without having to code at all (or want to avoid the pain of doing all of the setup required), you can signup for free and try out Hawksight - this new no-code tool I’m building to democratize data driven investments.

Hoping to make these kinds of powerful analyses accessible to more people!

Optimize trading strategies with automated grid search

fastquant allows you to automatically measure the performance of your trading strategy on multiple combinations of parameters. All you need to do is to input the values as iterators (like as a list or range).

Simple Moving Average Crossover (15 to 30 day MA vs 40 to 55 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
res = backtest("smac", df, fast_period=range(15, 30, 3), slow_period=range(40, 55, 3), verbose=False)

# Optimal parameters: {'init_cash': 100000, 'buy_prop': 1, 'sell_prop': 1, 'execution_type': 'close', 'fast_period': 15, 'slow_period': 40}
# Optimal metrics: {'rtot': 0.022, 'ravg': 9.25e-05, 'rnorm': 0.024, 'rnorm100': 2.36, 'sharperatio': None, 'pnl': 2272.9, 'final_value': 102272.90}

print(res[['fast_period', 'slow_period', 'final_value']].head())

#	fast_period	slow_period	final_value
#0	15	        40	        102272.90
#1	21	        40	         98847.00
#2	21	        52	         98796.09
#3	24	        46	         98008.79
#4	15	        46	         97452.92

Library of trading strategies

Strategy Alias Parameters
Relative Strength Index (RSI) rsi rsi_period, rsi_upper, rsi_lower
Simple moving average crossover (SMAC) smac fast_period, slow_period
Exponential moving average crossover (EMAC) emac fast_period, slow_period
Moving Average Convergence Divergence (MACD) macd fast_perod, slow_upper, signal_period, sma_period, dir_period
Bollinger Bands bbands period, devfactor
Buy and Hold buynhold N/A
Sentiment Strategy sentiment keyword , page_nums, senti
Custom Prediction Strategy custom upper_limit, lower_limit, custom_column
Custom Ternary Strategy ternary buy_int, sell_int, custom_column

Relative Strength Index (RSI) Strategy

backtest('rsi', df, rsi_period=14, rsi_upper=70, rsi_lower=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 132967.87

Simple moving average crossover (SMAC) Strategy

backtest('smac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 95902.74

Exponential moving average crossover (EMAC) Strategy

backtest('emac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 90976.00

Moving Average Convergence Divergence (MACD) Strategy

backtest('macd', df, fast_period=12, slow_period=26, signal_period=9, sma_period=30, dir_period=10)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 96229.58

Bollinger Bands Strategy

backtest('bbands', df, period=20, devfactor=2.0)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 97060.30

News Sentiment Strategy

Use Tesla (TSLA) stock from yahoo finance and news articles from Business Times

from fastquant import get_yahoo_data, get_bt_news_sentiment
data = get_yahoo_data("TSLA", "2020-01-01", "2020-07-04")
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 313198.37
# Note: Unfortunately, you can't recreate this scenario due to inconsistencies in the dates and sentiments that is scraped by get_bt_news_sentiment. In order to have a quickstart with News Sentiment Strategy you need to make the dates consistent with the sentiments that you are scraping.

from fastquant import get_yahoo_data, get_bt_news_sentiment
from datetime import datetime, timedelta

# we get the current date and delta time of 30 days
current_date = datetime.now().strftime("%Y-%m-%d")
delta_date = (datetime.now() - timedelta(30)).strftime("%Y-%m-%d")
data = get_yahoo_data("TSLA", delta_date, current_date)
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

Multi Strategy

Multiple registered strategies can be utilized together in an OR fashion, where buy or sell signals are applied when at least one of the strategies trigger them.

df = get_stock_data("JFC", "2018-01-01", "2019-01-01")

# Utilize single set of parameters
strats = { 
    "smac": {"fast_period": 35, "slow_period": 50}, 
    "rsi": {"rsi_lower": 30, "rsi_upper": 70} 
} 
res = backtest("multi", df, strats=strats)
res.shape
# (1, 16)


# Utilize auto grid search
strats_opt = { 
    "smac": {"fast_period": 35, "slow_period": [40, 50]}, 
    "rsi": {"rsi_lower": [15, 30], "rsi_upper": 70} 
} 

res_opt = backtest("multi", df, strats=strats_opt)
res_opt.shape
# (4, 16)

Custom Strategy for Backtesting Machine Learning & Statistics Based Predictions

This powerful strategy allows you to backtest your own trading strategies using any type of model w/ as few as 3 lines of code after the forecast!

Predictions based on any model can be used as a custom indicator to be backtested using fastquant. You just need to add a custom column in the input dataframe, and set values for upper_limit and lower_limit.

The strategy is structured similar to RSIStrategy where you can set an upper_limit, above which the asset is sold (considered "overbought"), and a lower_limit, below which the asset is bought (considered "underbought). upper_limit is set to 95 by default, while lower_limit is set to 5 by default.

In the example below, we show how to use the custom strategy to backtest a custom indicator based on out-of-sample time series forecasts. The forecasts were generated using Facebook's Prophet package on Bitcoin prices.

from fastquant import get_crypto_data, backtest
from fbprophet import Prophet
import pandas as pd
from matplotlib import pyplot as plt

# Pull crypto data
df = get_crypto_data("BTC/USDT", "2019-01-01", "2020-05-31")

# Fit model on closing prices
ts = df.reset_index()[["dt", "close"]]
ts.columns = ['ds', 'y']
m = Prophet(daily_seasonality=True, yearly_seasonality=True).fit(ts)
forecast = m.make_future_dataframe(periods=0, freq='D')

# Predict and plot
pred = m.predict(forecast)
fig1 = m.plot(pred)
plt.title('BTC/USDT: Forecasted Daily Closing Price', fontsize=25)

+1.5%, and sell when it's < -1.5%. df["custom"] = expected_1day_return.multiply(-1) backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)">
# Convert predictions to expected 1 day returns
expected_1day_return = pred.set_index("ds").yhat.pct_change().shift(-1).multiply(100)

# Backtest the predictions, given that we buy bitcoin when the predicted next day return is > +1.5%, and sell when it's < -1.5%.
df["custom"] = expected_1day_return.multiply(-1)
backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)

See more examples here.

fastquant API

View full list of fastquan API here

Be part of the growing fastquant community

Want to discuss more about fastquant with other users, and our team of developers?

You can reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Run fastquant in a Docker Container

>> df.head()">
# Build the image
docker build -t myimage .

# Run the container
docker run -t -d -p 5000:5000 myimage

# Get the container id
docker ps

# SSH into the fastquant container
docker exec -it 
   
     /bin/bash

# Run python and use fastquant
python

>>> from fastquant import get_stock_data
>>> df = get_stock_data("TSLA", "2019-01-01", "2020-01-01")
>>> df.head()

   
Owner
Lorenzo Ampil
co-founder & dev @ Hawksight.co | democratizing smart defi | creator of fastquant | top contributor @flipsidecrypto | 🇵🇭 based in 🇸🇬
Lorenzo Ampil
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023