Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

Overview

fastquant 🤓

Build Status Code style: black License: MIT Downloads

Bringing backtesting to the mainstream

fastquant allows you to easily backtest investment strategies with as few as 3 lines of python code. Its goal is to promote data driven investments by making quantitative analysis in finance accessible to everyone.

To do this type of analysis without coding, you can also try out Hawksight, which was just recently launched! 😄

If you want to interact with us directly, you can also reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Features

  1. Easily access historical stock data
  2. Backtest and optimize trading strategies with only 3 lines of code

* - Both Yahoo Finance and Philippine stock data data are accessible straight from fastquant

Check out our blog posts in the fastquant website and this intro article on Medium!

Installation

Python

pip install fastquant
or
python -m pip install fastquant

Get stock data

All symbols from Yahoo Finance and Philippine Stock Exchange (PSE) are accessible via get_stock_data.

Python

from fastquant import get_stock_data
df = get_stock_data("JFC", "2018-01-01", "2019-01-01")
print(df.head())

#           dt  close
#   2019-01-01  293.0
#   2019-01-02  292.0
#   2019-01-03  309.0
#   2019-01-06  323.0
#   2019-01-07  321.0

Get crypto data

The data is pulled from Binance, and all the available tickers are found here.

Python

from fastquant import get_crypto_data
crypto = get_crypto_data("BTC/USDT", "2018-12-01", "2019-12-31")
crypto.head()

#             open    high     low     close    volume
# dt                                                          
# 2018-12-01  4041.27  4299.99  3963.01  4190.02  44840.073481
# 2018-12-02  4190.98  4312.99  4103.04  4161.01  38912.154790
# 2018-12-03  4160.55  4179.00  3827.00  3884.01  49094.369163
# 2018-12-04  3884.76  4085.00  3781.00  3951.64  48489.551613
# 2018-12-05  3950.98  3970.00  3745.00  3769.84  44004.799448

Backtest trading strategies

Simple Moving Average Crossover (15 day MA vs 40 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
backtest('smac', df, fast_period=15, slow_period=40)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 102272.90

Want to do this without coding at all?

If you want to make this kind of analysis even more simple without having to code at all (or want to avoid the pain of doing all of the setup required), you can signup for free and try out Hawksight - this new no-code tool I’m building to democratize data driven investments.

Hoping to make these kinds of powerful analyses accessible to more people!

Optimize trading strategies with automated grid search

fastquant allows you to automatically measure the performance of your trading strategy on multiple combinations of parameters. All you need to do is to input the values as iterators (like as a list or range).

Simple Moving Average Crossover (15 to 30 day MA vs 40 to 55 day MA)

Daily Jollibee prices from 2018-01-01 to 2019-01-01

from fastquant import backtest
res = backtest("smac", df, fast_period=range(15, 30, 3), slow_period=range(40, 55, 3), verbose=False)

# Optimal parameters: {'init_cash': 100000, 'buy_prop': 1, 'sell_prop': 1, 'execution_type': 'close', 'fast_period': 15, 'slow_period': 40}
# Optimal metrics: {'rtot': 0.022, 'ravg': 9.25e-05, 'rnorm': 0.024, 'rnorm100': 2.36, 'sharperatio': None, 'pnl': 2272.9, 'final_value': 102272.90}

print(res[['fast_period', 'slow_period', 'final_value']].head())

#	fast_period	slow_period	final_value
#0	15	        40	        102272.90
#1	21	        40	         98847.00
#2	21	        52	         98796.09
#3	24	        46	         98008.79
#4	15	        46	         97452.92

Library of trading strategies

Strategy Alias Parameters
Relative Strength Index (RSI) rsi rsi_period, rsi_upper, rsi_lower
Simple moving average crossover (SMAC) smac fast_period, slow_period
Exponential moving average crossover (EMAC) emac fast_period, slow_period
Moving Average Convergence Divergence (MACD) macd fast_perod, slow_upper, signal_period, sma_period, dir_period
Bollinger Bands bbands period, devfactor
Buy and Hold buynhold N/A
Sentiment Strategy sentiment keyword , page_nums, senti
Custom Prediction Strategy custom upper_limit, lower_limit, custom_column
Custom Ternary Strategy ternary buy_int, sell_int, custom_column

Relative Strength Index (RSI) Strategy

backtest('rsi', df, rsi_period=14, rsi_upper=70, rsi_lower=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 132967.87

Simple moving average crossover (SMAC) Strategy

backtest('smac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 95902.74

Exponential moving average crossover (EMAC) Strategy

backtest('emac', df, fast_period=10, slow_period=30)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 90976.00

Moving Average Convergence Divergence (MACD) Strategy

backtest('macd', df, fast_period=12, slow_period=26, signal_period=9, sma_period=30, dir_period=10)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 96229.58

Bollinger Bands Strategy

backtest('bbands', df, period=20, devfactor=2.0)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 97060.30

News Sentiment Strategy

Use Tesla (TSLA) stock from yahoo finance and news articles from Business Times

from fastquant import get_yahoo_data, get_bt_news_sentiment
data = get_yahoo_data("TSLA", "2020-01-01", "2020-07-04")
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

# Starting Portfolio Value: 100000.00
# Final Portfolio Value: 313198.37
# Note: Unfortunately, you can't recreate this scenario due to inconsistencies in the dates and sentiments that is scraped by get_bt_news_sentiment. In order to have a quickstart with News Sentiment Strategy you need to make the dates consistent with the sentiments that you are scraping.

from fastquant import get_yahoo_data, get_bt_news_sentiment
from datetime import datetime, timedelta

# we get the current date and delta time of 30 days
current_date = datetime.now().strftime("%Y-%m-%d")
delta_date = (datetime.now() - timedelta(30)).strftime("%Y-%m-%d")
data = get_yahoo_data("TSLA", delta_date, current_date)
sentiments = get_bt_news_sentiment(keyword="tesla", page_nums=3)
backtest("sentiment", data, sentiments=sentiments, senti=0.2)

Multi Strategy

Multiple registered strategies can be utilized together in an OR fashion, where buy or sell signals are applied when at least one of the strategies trigger them.

df = get_stock_data("JFC", "2018-01-01", "2019-01-01")

# Utilize single set of parameters
strats = { 
    "smac": {"fast_period": 35, "slow_period": 50}, 
    "rsi": {"rsi_lower": 30, "rsi_upper": 70} 
} 
res = backtest("multi", df, strats=strats)
res.shape
# (1, 16)


# Utilize auto grid search
strats_opt = { 
    "smac": {"fast_period": 35, "slow_period": [40, 50]}, 
    "rsi": {"rsi_lower": [15, 30], "rsi_upper": 70} 
} 

res_opt = backtest("multi", df, strats=strats_opt)
res_opt.shape
# (4, 16)

Custom Strategy for Backtesting Machine Learning & Statistics Based Predictions

This powerful strategy allows you to backtest your own trading strategies using any type of model w/ as few as 3 lines of code after the forecast!

Predictions based on any model can be used as a custom indicator to be backtested using fastquant. You just need to add a custom column in the input dataframe, and set values for upper_limit and lower_limit.

The strategy is structured similar to RSIStrategy where you can set an upper_limit, above which the asset is sold (considered "overbought"), and a lower_limit, below which the asset is bought (considered "underbought). upper_limit is set to 95 by default, while lower_limit is set to 5 by default.

In the example below, we show how to use the custom strategy to backtest a custom indicator based on out-of-sample time series forecasts. The forecasts were generated using Facebook's Prophet package on Bitcoin prices.

from fastquant import get_crypto_data, backtest
from fbprophet import Prophet
import pandas as pd
from matplotlib import pyplot as plt

# Pull crypto data
df = get_crypto_data("BTC/USDT", "2019-01-01", "2020-05-31")

# Fit model on closing prices
ts = df.reset_index()[["dt", "close"]]
ts.columns = ['ds', 'y']
m = Prophet(daily_seasonality=True, yearly_seasonality=True).fit(ts)
forecast = m.make_future_dataframe(periods=0, freq='D')

# Predict and plot
pred = m.predict(forecast)
fig1 = m.plot(pred)
plt.title('BTC/USDT: Forecasted Daily Closing Price', fontsize=25)

+1.5%, and sell when it's < -1.5%. df["custom"] = expected_1day_return.multiply(-1) backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)">
# Convert predictions to expected 1 day returns
expected_1day_return = pred.set_index("ds").yhat.pct_change().shift(-1).multiply(100)

# Backtest the predictions, given that we buy bitcoin when the predicted next day return is > +1.5%, and sell when it's < -1.5%.
df["custom"] = expected_1day_return.multiply(-1)
backtest("custom", df.dropna(),upper_limit=1.5, lower_limit=-1.5)

See more examples here.

fastquant API

View full list of fastquan API here

Be part of the growing fastquant community

Want to discuss more about fastquant with other users, and our team of developers?

You can reach us on the Hawksight discord. Feel free to ask about fastquant in the #feedback-suggestions and #bug-report channels.

Run fastquant in a Docker Container

>> df.head()">
# Build the image
docker build -t myimage .

# Run the container
docker run -t -d -p 5000:5000 myimage

# Get the container id
docker ps

# SSH into the fastquant container
docker exec -it 
   
     /bin/bash

# Run python and use fastquant
python

>>> from fastquant import get_stock_data
>>> df = get_stock_data("TSLA", "2019-01-01", "2020-01-01")
>>> df.head()

   
Owner
Lorenzo Ampil
co-founder & dev @ Hawksight.co | democratizing smart defi | creator of fastquant | top contributor @flipsidecrypto | 🇵🇭 based in 🇸🇬
Lorenzo Ampil
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022