Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Overview

License CC BY-NC-SA 4.0 Python 3.6 Language grade: Python

Joint Discriminative and Generative Learning for Person Re-identification

[Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp]

Joint Discriminative and Generative Learning for Person Re-identification, CVPR 2019 (Oral)
Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, Jan Kautz

Table of contents

News

  • 02/18/2021: We release DG-Net++: the extention of DG-Net for unsupervised cross-domain re-id.
  • 08/24/2019: We add the direct transfer learning results of DG-Net here.
  • 08/01/2019: We add the support of multi-GPU training: python train.py --config configs/latest.yaml --gpu_ids 0,1.

Features

We have supported:

  • Multi-GPU training (fp32)
  • APEX to save GPU memory (fp16/fp32)
  • Multi-query evaluation
  • Random erasing
  • Visualize training curves
  • Generate all figures in the paper

Prerequisites

  • Python 3.6
  • GPU memory >= 15G (fp32)
  • GPU memory >= 10G (fp16/fp32)
  • NumPy
  • PyTorch 1.0+
  • [Optional] APEX (fp16/fp32)

Getting Started

Installation

  • Install PyTorch
  • Install torchvision from the source:
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
  • [Optional] You may skip it. Install APEX from the source:
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext
  • Clone this repo:
git clone https://github.com/NVlabs/DG-Net.git
cd DG-Net/

Our code is tested on PyTorch 1.0.0+ and torchvision 0.2.1+ .

Dataset Preparation

Download the dataset Market-1501 [Google Drive] [Baidu Disk]

Preparation: put the images with the same id in one folder. You may use

python prepare-market.py          # for Market-1501

Note to modify the dataset path to your own path.

Testing

Download the trained model

We provide our trained model. You may download it from Google Drive (or Baidu Disk password: rqvf). You may download and move it to the outputs.

├── outputs/
│   ├── E0.5new_reid0.5_w30000
├── models
│   ├── best/                   

Person re-id evaluation

  • Supervised learning
Market-1501 DukeMTMC-reID MSMT17 CUHK03-NP
[email protected] 94.8% 86.6% 77.2% 65.6%
mAP 86.0% 74.8% 52.3% 61.1%
  • Direct transfer learning
    To verify the generalizability of DG-Net, we train the model on dataset A and directly test the model on dataset B (with no adaptation). We denote the direct transfer learning protocol as A→B.
Market→Duke Duke→Market Market→MSMT MSMT→Market Duke→MSMT MSMT→Duke
[email protected] 42.62% 56.12% 17.11% 61.76% 20.59% 61.89%
[email protected] 58.57% 72.18% 26.66% 77.67% 31.67% 75.81%
[email protected] 64.63% 78.12% 31.62% 83.25% 37.04% 80.34%
mAP 24.25% 26.83% 5.41% 33.62% 6.35% 40.69%

Image generation evaluation

Please check the README.md in the ./visual_tools.

You may use the ./visual_tools/test_folder.py to generate lots of images and then do the evaluation. The only thing you need to modify is the data path in SSIM and FID.

Training

Train a teacher model

You may directly download our trained teacher model from Google Drive (or Baidu Disk password: rqvf). If you want to have it trained by yourself, please check the person re-id baseline repository to train a teacher model, then copy and put it in the ./models.

├── models/
│   ├── best/                   /* teacher model for Market-1501
│       ├── net_last.pth        /* model file
│       ├── ...

Train DG-Net

  1. Setup the yaml file. Check out configs/latest.yaml. Change the data_root field to the path of your prepared folder-based dataset, e.g. ../Market-1501/pytorch.

  2. Start training

python train.py --config configs/latest.yaml

Or train with low precision (fp16)

python train.py --config configs/latest-fp16.yaml

Intermediate image outputs and model binary files are saved in outputs/latest.

  1. Check the loss log
 tensorboard --logdir logs/latest

DG-Market

We provide our generated images and make a large-scale synthetic dataset called DG-Market. This dataset is generated by our DG-Net and consists of 128,307 images (613MB), about 10 times larger than the training set of original Market-1501 (even much more can be generated with DG-Net). It can be used as a source of unlabeled training dataset for semi-supervised learning. You may download the dataset from Google Drive (or Baidu Disk password: qxyh).

DG-Market Market-1501 (training)
#identity - 751
#images 128,307 12,936

Tips

Note the format of camera id and number of cameras. For some datasets (e.g., MSMT17), there are more than 10 cameras. You need to modify the preparation and evaluation code to read the double-digit camera id. For some vehicle re-id datasets (e.g., VeRi) having different naming rules, you also need to modify the preparation and evaluation code.

Citation

Please cite this paper if it helps your research:

@inproceedings{zheng2019joint,
  title={Joint discriminative and generative learning for person re-identification},
  author={Zheng, Zhedong and Yang, Xiaodong and Yu, Zhiding and Zheng, Liang and Yang, Yi and Kautz, Jan},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}

Related Work

Other GAN-based methods compared in the paper include LSGAN, FDGAN and PG2GAN. We forked the code and made some changes for evaluatation, thank the authors for their great work. We would also like to thank to the great projects in person re-id baseline, MUNIT and DRIT.

License

Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International). The code is released for academic research use only. For commercial use, please contact [email protected].

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022