ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

Related tags

Deep LearningVoodoo
Overview

Release DOI MIT License Twitter


Logo

VOODOO

Revealing supercooled liquid beyond lidar attenuation
Explore the docs »

Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgments

About The Project VOODOO

Machine learning approach using a convolutional neural network (CNN) classifier to relate Doppler spectra morphologies to the presence of (supercooled) liquid cloud droplets in mixed-phase clouds. Preprint will be available soon!

The release version provides the pre-trained machine learning model. Predictions are made by providing a list of Doppler radar time-spectrograms with dimensions:

  • number of spectral bins = 256
  • number of time steps = 6 (equivalent to 30 sec of observations)

The model was trained on RPG-FMCW94 data collected during DACAPO-PESO, therefore we recommend using this device for analysis. Supervision and validiation is provided by the CloudnetPy target classification and detection status.

Two examples are provided:

  • RPG-FMCW94 Doppler cloud radar Voodoo_predictor_RPG-FMCW94.ipynb test data is provided in the examples_data folder. The script requires a (hourly) LV0 binary file from RPG-FMCW94 and the corresponding Cloundet categorization file (for quicklooks and temporal resolution).
  • for KAZR Doppler cloud radar: Voodoo_predictor_KAZR.ipynb
  • help me test and add more devices :)

The CNN will ultimately be a feature within the Cloudnet processing suite.

Some examples of enhancend Cloudnet mixed-phase detection

previews.png

(back to top)

Getting Started

The examples given use hourly radar spectra files in there specific file formats, i.e. LV0 binaries form RPG-FMCW94 and NetCDF files from KAZR. Th Cloudnet categorization file provides the temporal resolution where the high resolution radar profiels are mappend onto the 30 sec Cloudnet grid. Additionately, radar reflectivity and attenuated backscatter coefficient are plotted.

Installation

Below is an example of how run the example script, which prepares the data, makes predictions and plots quicklooks. This method relies on external dependencies such as torch, xarray and others (see setup.py).

  1. Clone the repo

    git clone https://github.com/remsens-lim/Voodoo.git
  2. Install the package

    python setup.py install

(back to top)

Examples

Use this space to show useful examples of how a project can be used. Additional screenshots, code examples and demos work well in this space. You may also link to more resources.

  1. Open jupyter notebook
    jupyter notebook
  2. Open one of the example files Voodoo_predictor_KAZR.ipynbor Voodoo_predictor_RPG-FMCW94.ipynb to review the processing chain.

(back to top)

Roadmap

  • Released version 1
  • Add Tests
  • ???

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE for more information.

(back to top)

Contact

Willi Schimmel - @KarlJohnsonnn - [email protected]

Project Link: https://github.com/remsens-lim/Voodoo

(back to top)

Acknowledgments

Special thanks for templates and help during implementation.

(back to top)

You might also like...
Learning Spatio-Temporal Transformer for Visual Tracking
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Fuse radar and camera for detection
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review of IEEE TPAMI. It is an extension of our previous ICCV project impersonator, and it has a more powerful ability in generalization and produces higher-resolution results (512 x 512, 1024 x 1024) than the previous ICCV version.

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Releases(v1.0.0)
Owner
remsens-lim
Leipzig Institute for Meteorology Remote-Sensing and the Arctic Climate Systems
remsens-lim
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021