Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Overview

Omniverse sample scripts

ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/omniverse/ ) のスクリプトのサンプルを貯めていってます。
Omniverseは、データ構造としてUSDを使用してます。
3Dモデルやシーンのファイルへの保存、読み込みでUSDが使用されるだけでなく、
Omniverse CreateやOmniverse ViewなどのOmniverseアプリのビュー上の制御もUSDを介して行われます(形状の表示/非表示の切り替えや移動など)。

ここでは、OmniverseアプリであるOmniverse CreateのScript Editorで試せるスクリプトのサンプルを用途別に列挙します。
Omniverse Create 2021.3.8で確認しました。

開発の参考サイト

Omniverseの情報は、Omniverse Launcherがポータルになっています。
ここのLEARNにチュートリアル動画やドキュメントなどが列挙されています。

NVIDIA Omniverse Developer Resource Center

https://developer.nvidia.com/nvidia-omniverse-developer-resource-center

Omniverse開発の入口となるサイトです。
全体的に何ができて何が重要か、というのは俯瞰して見ることができます。

はじめに

Omniverse Createで、メインメニューの [Window] - [Script Editor]を選択して、Script Editorを起動します。

omniverse_script_editor_01.png

この中でPythonを使用してプログラムを書きます。
左下のRunボタンを押すか、[Ctrl] +[Enter]キーを押すことで実行します。

以下、Pythonの初歩的な説明です。

コメント

1行のコメントの場合、"#"から行の末尾までがコメントになります。

# comment.

複数行の場合は、""" から """ までがコメントになります。

"""
comment.
line2.
"""

print

デバッグ用のメッセージはprintで記載します。

print('Hello Omniverse !')

学習のための知識

機能説明用のサンプル

サンプル 説明
Camera カメラ操作
Geometry ジオメトリの作成
Material マテリアルの割り当て
Math ベクトル/行列計算関連
Operation Ominverseの操作情報を取得/イベント処理
Physics Physics(物理)処理
pip_archive Pythonのよく使われるモジュールの使用
Prim USDのPrim(ノード)の操作
Rendering レンダリング画像の取得
Scene シーン情報の取得
Settings 設定の取得
System システム関連情報の取得
UI UI操作

ツール的なサンプル

サンプル 説明
Samples サンプルスクリプト

Extension

サンプル 説明
Extensions サンプルExtension
Owner
ft-lab (Yutaka Yoshisaka)
ft-lab (Yutaka Yoshisaka)
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022