Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Overview

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image

This repository contains the PyTorch implementation of the paper: Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen, Li-Yi Wei, Yi Ma. "Learning to Reconstruct 3D Manhattan Wireframes From a Single Image", ICCV 2019.

Introduction

The goal of this project is to explore the idea of reconstructing high-quality compact CAD-like 3D models from images. We propose a method to create accurate 3D wireframe representation from a single image by exploiting global structural regularities. Our method uses a convolutional neural network to simultaneously detect salient junctions and straight lines, as well as predict their 3D depth and vanishing points.

Qualitative Results

Input Predicted Input Predicted

Code Structure

Below is a quick overview of the function of key files.

########################### Data ###########################
data/
    SU3/                        # default folder for the scenecity 3D dataset
logs/                           # default folder for storing the output during training
########################### Code ###########################
config/                         # neural network hyper-parameters and configurations
wireframe/                      # module so you can "import wireframe" in scripts
train.py                        # script for training and evaluating the neural network
vectorize_u3d.py                # script for turning the 2.5D results into 3D wireframe

Reproducing Results

Installation

You are suggested to install miniconda before following executing the following commands.

git clone https://github.com/zhou13/shapeunity
cd shapeunity
conda create -y -n shapeunity
source activate shapeunity
conda install -y pyyaml docopt matplotlib scikit-image opencv tqdm
# Replace cudatoolkit=10.2 with your CUDA version: https://pytorch.org/get-started/
conda install -y pytorch cudatoolkit=10.2 -c pytorch
python -m pip install --upgrade vispy cvxpy
mkdir data logs

Downloading the Processed Datasets

Make sure curl is installed on your system and execute

cd data
../misc/gdrive-download.sh 1-TABJjT4-_yzE-iRD-n_yIJ9Kwzzkm7X SU3.zip
unzip SU3.zip
rm *.zip
cd ..

Note: If your downloaded zip file is corrupted, it is likely due to the restriction on the amount of data that can be downloaded from my account per day. In that case, you can try to download the pre-processed dataset manually from our Google Drive and proceed accordingly.

Downloading the Pre-trained Models

Execute the following command to download and unzip the pre-trained models.

cd logs
../misc/gdrive-download.sh 1AuE3yje7jTRne2KjiVdxAWo1UT03i16a pretrained-wireframe.zip
../misc/gdrive-download.sh 1YwPMbAHnxSA3BgiM5Q26mKSTjd46OYRo pretrained-vanishing-points.zip
unzip pretrained-wireframe.zip
unzip pretrained-vanishing-points.zip
rm *.zip
cd ..

Alternatively, you can download them at this Google Drive link and this Google Drive link, respectively.

Training (Optional)

If you want to train the model yourself rather than using the pre-trained models, execute the following commands to train the neural networks from scratch with four GPUs (specified by -d 0,1,2,3):

python ./train.py -d 0,1,2,3 --identifier baseline config/hourglass.yaml

The checkpoints and logs will be written to logs/ accordingly.

We note that vanishing points are only supported by the neural network under the git branch vanishing-points. You need to visit that part of the code with git checkout vanishing-points for training the network with the vanishing point branch.

Predicting the 2.5D Wireframe (Optional)

Execute the following command to evaluate the neural network on the validation split:

python train.py --eval -d 0 -i default --from logs/pretrained-wireframe/checkpoint_latest.pth.tar logs/pretrained-wireframe/config.yaml

This command should generate a new folder under the logs directory with results in the npz folders.

Vectorization & Visualization

To visualize the working examples of ShapeUnity, execute the following commands:

python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 57
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 100
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 109
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 141
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 299

Evaluation (Optional)

To quantitatively evaluate the wireframe quality of ShapeUnity, execute the following command:

python eval_2d3d_metric.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000

The details of the sAP-10 metric can be found in the paper LCNN.

Acknowledgement

This work is supported by a research grant from Sony Research. We thank Xili Dai for providing the sAP evaluation script for the project.

Citing ShapeUnity

If you find this project useful in your research, please consider citing:

@inproceedings{zhou2019learning,
  title={Learning to Reconstruct 3D Manhattan Wireframes From a Single Image},
  author={Zhou, Yichao and Qi, Haozhi and Zhai, Yuexiang and Sun, Qi and Chen, Zhili and Wei, Li-Yi and Ma, Yi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2019}
}
Owner
Yichao Zhou
Apple Inc. | Ph.D. at UC Berkeley
Yichao Zhou
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022