Full-featured Decision Trees and Random Forests learner.

Overview

CID3

Latest Release License Github All Releases GitHub Follow Twitter Follow

This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query trees and Random Forests and to fill out an unlabeled file with the predicted classes. Documentation is not yet available, although the program options can be shown with command:

% java -jar cid3.jar -h

usage: java -jar cid3.jar
 -a,--analysis <name>    show causal analysis report
 -c,--criteria <name>    input criteria: c[Certainty], e[Entropy], g[Gini]
 -f,--file <name>        input file
 -h,--help               print this message
 -o,--output <name>      output file
 -p,--partition          partition train/test data
 -q,--query <type>       query model, enter: t[Tree] or r[Random forest]
 -r,--forest <amount>    create random forest, enter # of trees
 -s,--save               save tree/random forest
 -t,--threads <amount>   maximum number of threads (default is 500)
 -v,--validation         create 10-fold cross-validation
 -ver,--version          version

List of features

  • It uses a new Certainty formula as splitting criteria.
  • Provides causal analysis report, which shows how some attribute values cause a particular classification.
  • Creates full trees, showing error rates for train and test data, attribute importance, causes and false positives/negatives.
  • If no test data is provided, it can split the train dataset in 80% for training and 20% for testing.
  • Creates random forests, showing error rates for train and test data, attribute importance, causes and false positives/negatives. Random forests are created in parallel, so it is very fast.
  • Creates 10 Fold Cross-Validation for trees and random forests, showing error rates, mean and Standard Error and false positives/negatives. Cross-Validation folds are created in parallel.
  • Saves trees and random forests to disk in a compressed file. (E.g. model.tree, model.forest)
  • Query trees and random forest from saved files. Queries can contain missing values, just enter the character: “?”.
  • Make predictions and fill out cases files with those predictions, either from single trees or random forests.
  • Missing values imputation for train and test data is implemented. Continuous attributes are imputed as the mean value. Discrete attributes are imputed as MODE, which selects the value that is most frequent.
  • Ignoring attributes is implemented. In the .names file just set the attribute type as: ignore.
  • Three different splitting criteria can be used: Certainty, Entropy and Gini. If no criteria is invoked then Certainty will be used.

Example run with titanic dataset

[email protected] datasets % java -jar cid3.jar -f titanic

CID3 [Version 1.1]              Saturday October 30, 2021 06:34:11 AM
------------------
[ ✓ ] Read data: 891 cases for training. (10 attributes)
[ ✓ ] Decision tree created.

Rules: 276
Nodes: 514

Importance Cause   Attribute Name
---------- -----   --------------
      0.57   yes ············ Sex
      0.36   yes ········· Pclass
      0.30   yes ··········· Fare
      0.28   yes ······· Embarked
      0.27   yes ·········· SibSp
      0.26   yes ·········· Parch
      0.23    no ············ Age


[==== TRAIN DATA ====] 

Correct guesses:  875
Incorrect guesses: 16 (1.8%)

# Of Cases  False Pos  False Neg   Class
----------  ---------  ---------   -----
       549         14          2 ····· 0
       342          2         14 ····· 1

Time: 0:00:00

Requirements

CID3 requires JDK 15 or higher.

The data format is similar to that of C4.5 and C5.0. The data file format is CSV, and it could be split in two separated files, like: titanic.data and titanic.test. The class attribute column must be the last column of the file. The other necessary file is the "names" file, which should be named like: titanic.names, and it contains the names and types of the attributes. The first line is the class attribute possible values. This line could be left empty with just a dot(.) Below is an example of the titanic.names file:

0,1.  
PassengerId: ignore.  
Pclass: 1,2,3.  
Sex : male,female.  
Age: continuous.  
SibSp: discrete.  
Parch: discrete.  
Ticket: ignore.  
Fare: continuous.  
Cabin: ignore.  
Embarked: discrete.  

Example of causal analysis

% java -jar cid3.jar -f adult -a education

From this example we can see that attribute "education" is a cause, which is based on the certainty-raising inequality. Once we know that it is a cause we then compare the causal certainties of its values. When it's value is "Doctorate" it causes the earnings to be greater than $50,000, with a probability of 0.73. A paper will soon be published with all the formulas used to calculate the Certainty for splitting the nodes and the certainty-raising inequality, used for causal analysis.

Importance Cause   Attribute Name
---------- -----   --------------
      0.56   yes ······ education

Report of causal certainties
----------------------------

[ Attribute: education ]

    1st-4th --> <=50K  (0.97)

    5th-6th --> <=50K  (0.95)

    7th-8th --> <=50K  (0.94)

    9th --> <=50K  (0.95)

    10th --> <=50K  (0.94)

    11th --> <=50K  (0.95)

    12th --> <=50K  (0.93)

    Assoc-acdm --> <=50K  (0.74)

    Assoc-voc --> <=50K  (0.75)

    Bachelors --> Non cause.

    Doctorate --> >50K  (0.73)

    HS-grad --> <=50K  (0.84)

    Masters --> >50K  (0.55)

    Preschool --> <=50K  (0.99)

    Prof-school --> >50K  (0.74)

    Some-college --> <=50K  (0.81)
You might also like...
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Random-Afg - Afghanistan Random Old Idz Cloner Tools
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Releases(v1.2.4)
Owner
Alejandro Penate-Diaz
Machine learner, web developer, scientist and photo edition enthusiast.
Alejandro Penate-Diaz
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022