Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Overview

Fast Training of Neural Lumigraph Representations using Meta Learning

Project Page | Paper | Data

Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzstein, Stanford University.
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Usage

To get started, create a conda environment with all dependencies:

conda env create -f environment.yml
conda activate metanlrpp

Code Structure

The code is organized as follows:

  • experiment_scripts: directory containing scripts to for training and testing MetaNLR++ models.
    • pretrain_features.py: pre-train encoder and decoder networks
    • train_sdf_ibr_meta.py: train meta-learned initialization for encoder, decoder, aggregation fn, and neural SDF
    • test_sdf_ibr_meta.py: specialize meta-learned initialization to a specific scene
    • train_sdf_ibr.py: train NLR++ model from scratch without meta-learned initialization
    • test_sdf_ibr.py: evaluate performance on withheld views
  • configs: directory containing configs to reproduce experiments in the paper
    • nlrpp_nlr.txt: configuration for training NLR++ on the NLR dataset
    • nlrpp_dtu.txt: configuration for training NLR++ on the DTU dataset
    • nlrpp_nlr_meta.txt: configuration for training the MetaNLR++ initialization on the NLR dataset
    • nlrpp_dtu_meta.txt: configuration for training the MetaNLR++ initialization on the DTU dataset
    • nlrpp_nlr_metaspec.txt: configuration for training MetaNLR++ on the NLR dataset using the learned initialization
    • nlrpp_dtu_metaspec.txt: configuration for training MetaNLR++ on the DTU dataset using the learned initialization
  • data_processing: directory containing utility functions for processing data
  • torchmeta: torchmeta library for meta-learning
  • utils: directory containing various utility functions for rendering and visualization
  • loss_functions.py: file containing loss functions for evaluation
  • meta_modules.py: contains meta learning wrappers around standard modules using torchmeta
  • modules.py: contains standard modules for coodinate-based networks
  • modules_sdf.py: extends standard modules for coordinate-based network representations of signed-distance functions.
  • modules_unet.py: contains encoder and decoder modules used for image-space feature processing
  • scheduler.py: utilities for training schedule
  • training.py: training script
  • sdf_rendering.py: functions for rendering SDF
  • sdf_meshing.py: functions for meshing SDF
  • checkpoints: contains checkpoints to some pre-trained models (additional/ablation models by request)
  • assets: contains paths to checkpoints which are used as assets, and pre-computed buffers over multiple runs (if necessary)

Getting Started

Pre-training Encoder and Decoder

Pre-train the encoder and decoder using the FlyingChairsV2 training dataset as follows:

python experiment_scripts/pretrain_features.py --experiment_name XXX --batch_size X --dataset_path /path/to/FlyingChairs2/train

Alternatively, use the checkpoint in the checkpoints directory.

Training NLR++

Train a NLR++ model using the following command:

python experiment_scripts/train_sdf_ibr.py --config_filepath configs/nlrpp_dtu.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --checkpoint_img_encoder /path/to/pretrained/encdec

Note that we have uploaded our processed version of the DTU data here, and the NLR data can be found here.

Meta-learned Initialization (MetaNLR++)

Meta-learn the initialization for the encoder, decoder, aggregation function, and neural SDF using the following command:

python experiment_scripts/train_sdf_ibr_meta.py --config_filepath configs/nlrpp_dtu_meta.txt --experiment_name XXX --dataset_path /path/to/dtu/meta/training --reference_view 24 --checkpoint_img_encoder /path/to/pretrained/encdec

Some optimized initializations for the DTU and NLR datasets can be found in the data directory. Additional models can be provided upon request.

Training MetaNLR++ from Initialization

Use the meta-learned initialization to specialize to a specific scene using the following command:

python experiment_scripts/test_sdf_ibr_meta.py --config_filepath configs/nlrpp_dtu_metaspec.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --reference_view 24 --meta_initialization /path/to/learned/meta/initialization

Evaluation

Test the converged scene on withheld views using the following command:

python experiment_scripts/test_sdf_ibr.py --config_filepath configs/nlrpp_dtu.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --checkpoint_path_test /path/to/checkpoint/to/evaluate

Citation & Contact

If you find our work useful in your research, please cite

@inproceedings{bergman2021metanlr,
author = {Bergman, Alexander W. and Kellnhofer, Petr and Wetzstein, Gordon},
title = {Fast Training of Neural Lumigraph Representations using Meta Learning},
booktitle = {NeurIPS},
year = {2021},
}

If you have any questions or would like access to specific ablations or baselines presented in the paper or supplement (the code presented here is only a subset based off of the source code used to generate the results), please feel free to contact the authors. Alex can be contacted via e-mail at [email protected].

Owner
Alex
Alex
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
113 Nov 28, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022