Certified Patch Robustness via Smoothed Vision Transformers

Overview

Certified Patch Robustness via Smoothed Vision Transformers

This repository contains the code for replicating the results of our paper:

Certified Patch Robustness via Smoothed Vision Transformers
Hadi Salman*, Saachi Jain*, Eric Wong*, Aleksander Madry

Paper
Blog post Part I.
Blog post Part II.

    @article{salman2021certified,
        title={Certified Patch Robustness via Smoothed Vision Transformers},
        author={Hadi Salman and Saachi Jain and Eric Wong and Aleksander Madry},
        booktitle={ArXiv preprint arXiv:2110.07719},
        year={2021}
    }

Getting started

Our code relies on the MadryLab public robustness library, which will be automatically installed when you follow the instructions below.

  1. Clone our repo: git clone https://github.mit.edu/hady/smoothed-vit

  2. Install dependencies:

    conda create -n smoothvit python=3.8
    conda activate smoothvit
    pip install -r requirements.txt
    

Full pipeline for building smoothed ViTs.

Now, we will walk you through the steps to create a smoothed ViT on the CIFAR-10 dataset. Similar steps can be followed for other datasets.

The entry point of our code is main.py (see the file for a full description of arguments).

First we will train the base classifier with ablations as data augmentation. Then we will apply derandomizd smoothing to build a smoothed version of the model which is certifiably robust.

Training the base classifier

The first step is to train the base classifier (here a ViT-Tiny) with ablations.

python src/main.py \
      --dataset cifar10 \
      --data /tmp \
      --arch deit_tiny_patch16_224 \
      --pytorch-pretrained \
      --out-dir OUTDIR \
      --exp-name demo \
      --epochs 30 \
      --lr 0.01 \
      --step-lr 10 \
      --batch-size 128 \
      --weight-decay 5e-4 \
      --adv-train 0 \
      --freeze-level -1 \
      --drop-tokens \
      --cifar-preprocess-type simple224 \
      --ablate-input \
      --ablation-type col \
      --ablation-size 4

Once training is done, the mode is saved in OUTDIR/demo/.

Certifying the smoothed classifier

Now we are ready to apply derandomized smoothing to obtain certificates for each datapoint against adversarial patches. To do so, simply run:

python src/main.py \
      --dataset cifar10 \
      --data /tmp \
      --arch deit_tiny_patch16_224 \
      --out-dir OUTDIR \
      --exp-name demo \
      --batch-size 128 \
      --adv-train 0 \
      --freeze-level -1 \
      --drop-tokens \
      --cifar-preprocess-type simple224 \
      --resume \
      --eval-only 1 \
      --certify \
      --certify-out-dir OUTDIR_CERT \
      --certify-mode col \
      --certify-ablation-size 4 \
      --certify-patch-size 5

This will calculate the standard and certified accuracies of the smoothed model. The results will be dumped into OUTDIR_CERT/demo/.

That's it! Now you can replicate all the results of our paper.

Download our ImageNet models

If you find our pretrained models useful, please consider citing our work.

Models trained with column ablations

Model Ablation Size = 19
ResNet-18 LINK
ResNet-50 LINK
WRN-101-2 LINK
ViT-T LINK
ViT-S LINK
ViT-B LINK

We have uploaded the most important models. If you need any other model (for the sweeps for example) please let us know and we are happy to provide!

Maintainers

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023