[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

Overview

TubeDETR: Spatio-Temporal Video Grounding with Transformers

WebsiteSTVG DemoPaper

PWC PWC PWC

This repository provides the code for our paper. This includes:

  • Software setup, data downloading and preprocessing instructions for the VidSTG, HC-STVG1 and HC-STVG2.0 datasets
  • Training scripts and pretrained checkpoints
  • Evaluation scripts and demo

Setup

Download FFMPEG and add it to the PATH environment variable. The code was tested with version ffmpeg-4.2.2-amd64-static. Then create a conda environment and install the requirements with the following commands:

conda create -n tubedetr_env python=3.8
conda activate tubedetr_env
pip install -r requirements.txt

Data Downloading

Setup the paths where you are going to download videos and annotations in the config json files.

VidSTG: Download VidOR videos and annotations from the VidOR dataset providers. Then download the VidSTG annotations from the VidSTG dataset providers. The vidstg_vid_path folder should contain a folder video containing the unzipped video folders. The vidstg_ann_path folder should contain both VidOR and VidSTG annotations.

HC-STVG: Download HC-STVG1 and HC-STVG2.0 videos and annotations from the HC-STVG dataset providers. The hcstvg_vid_path folder should contain a folder video containing the unzipped video folders. The hcstvg_ann_path folder should contain both HC-STVG1 and HC-STVG2.0 annotations.

Data Preprocessing

To preprocess annotation files, run:

python preproc/preproc_vidstg.py
python preproc/preproc_hcstvg.py
python preproc/preproc_hcstvgv2.py

Training

Download pretrained RoBERTa tokenizer and model weights in the TRANSFORMERS_CACHE folder. Download pretrained ResNet-101 model weights in the TORCH_HOME folder. Download MDETR pretrained model weights with ResNet-101 backbone in the current folder.

VidSTG To train on VidSTG, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=vidstg --combine_datasets_val=vidstg \
--dataset_config config/vidstg.json --output-dir=OUTPUT_DIR

HC-STVG2.0 To train on HC-STVG2.0, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--v2 --dataset_config config/hcstvg.json --epochs=20 --output-dir=OUTPUT_DIR

HC-STVG1 To train on HC-STVG1, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--dataset_config config/hcstvg.json --epochs=40 --eval_skip=40 --output-dir=OUTPUT_DIR

Baselines

  • To remove time encoding, add --no_time_embed.
  • To remove the temporal self-attention in the space-time decoder, add --no_tsa.
  • To train from ImageNet initialization, pass an empty string to the argument --load and add --sted_loss_coef=5 --lr=2e-5 --text_encoder_lr=2e-5 --epochs=20 --lr_drop=20 for VidSTG or --epochs=60 --lr_drop=60 for HC-STVG1.
  • To train with a randomly initalized temporal self-attention, add --rd_init_tsa.
  • To train with a different spatial resolution (e.g. res=352) or temporal stride (e.g. k=4), add --resolution=224 or --stride=5.
  • To train with the slow-only variant, add --no_fast.
  • To train with alternative designs for the fast branch, add --fast=VARIANT.

Available Checkpoints

Training data parameters url size
MDETR init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + VidSTG k=2 res=224 Drive 3.0GB
ImageNet init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=2 res=224 Drive 3.0GB
MDETR init + HC-STVG1 k=4 res=352 Drive 3.0GB
ImageNet init + HC-STVG1 k=4 res=352 Drive 3.0GB

Evaluation

For evaluation only, simply run the same commands as for training with --resume=CHECKPOINT --eval. For this to be done on the test set, add --test (in this case predictions and attention weights are also saved).

Spatio-Temporal Video Grounding Demo

You can also use a pretrained model to infer a spatio-temporal tube on a video of your choice (VIDEO_PATH with potential START and END timestamps) given the natural language query of your choice (CAPTION) with the following command:

python demo_stvg.py --load=CHECKPOINT --caption_example CAPTION --video_example VIDEO_PATH --start_example=START --end_example=END --output-dir OUTPUT_PATH

Note that we also host an online demo at this link, the code of which is available at server_stvg.py and server_stvg.html.

Acknowledgements

This codebase is built on the MDETR codebase. The code for video spatial data augmentation is inspired by torch_videovision.

Citation

If you found this work useful, consider giving this repository a star and citing our paper as followed:

@inproceedings{yang2022tubedetr,
title={TubeDETR: Spatio-Temporal Video Grounding with Transformers},
author={Yang, Antoine and Miech, Antoine and Sivic, Josef and Laptev, Ivan and Schmid, Cordelia},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}}
Owner
Antoine Yang
PhD Student in Computer Vision at Inria Paris
Antoine Yang
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022