Learning Spatio-Temporal Transformer for Visual Tracking

Related tags

Deep LearningStark
Overview

STARK

PWC
PWC
PWC

The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking

Hiring research interns for visual transformer projects: [email protected]

STARK_Framework

Highlights

End-to-End, Post-processing Free

STARK is an end-to-end tracking approach, which directly predicts one accurate bounding box as the tracking result.
Besides, STARK does not use any hyperparameters-sensitive post-processing, leading to stable performances.

Real-Time Speed

STARK-ST50 and STARK-ST101 run at 40FPS and 30FPS respectively on a Tesla V100 GPU.

Strong performance

Tracker LaSOT (AUC) GOT-10K (AO) TrackingNet (AUC)
STARK 67.1 68.8 82.0
TransT 64.9 67.1 81.4
TrDiMP 63.7 67.1 78.4
Siam R-CNN 64.8 64.9 81.2

Purely PyTorch-based Code

STARK is implemented purely based on the PyTorch.

Install the environment

Option1: Use the Anaconda

conda create -n stark python=3.6
conda activate stark
bash install.sh

Option2: Use the docker file

We provide the complete docker at here

Data Preparation

Put the tracking datasets in ./data. It should look like:

${STARK_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train STARK

Training with multiple GPUs using DDP

# STARK-S50
python tracking/train.py --script stark_s --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-S50
# STARK-ST50
python tracking/train.py --script stark_st1 --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST50 Stage1
python tracking/train.py --script stark_st2 --config baseline --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline  # STARK-ST50 Stage2
# STARK-ST101
python tracking/train.py --script stark_st1 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST101 Stage1
python tracking/train.py --script stark_st2 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline_R101  # STARK-ST101 Stage2

(Optionally) Debugging training with a single GPU

python tracking/train.py --script stark_s --config baseline --save_dir . --mode single

Test and evaluate STARK on benchmarks

  • LaSOT
python tracking/test.py stark_st baseline --dataset lasot --threads 32
python tracking/analysis_results.py # need to modify tracker configs and names
  • GOT10K-test
python tracking/test.py stark_st baseline_got10k_only --dataset got10k_test --threads 32
python lib/test/utils/transform_got10k.py --tracker_name stark_st --cfg_name baseline_got10k_only
  • TrackingNet
python tracking/test.py stark_st baseline --dataset trackingnet --threads 32
python lib/test/utils/transform_trackingnet.py --tracker_name stark_st --cfg_name baseline
  • VOT2020
    Before evaluating "STARK+AR" on VOT2020, please install some extra packages following external/AR/README.md
cd external/vot20/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh
  • VOT2020-LT
cd external/vot20_lt/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh

Test FLOPs, Params, and Speed

# Profiling STARK-S50 model
python tracking/profile_model.py --script stark_s --config baseline
# Profiling STARK-ST50 model
python tracking/profile_model.py --script stark_st2 --config baseline
# Profiling STARK-ST101 model
python tracking/profile_model.py --script stark_st2 --config baseline_R101

Model Zoo

The trained models, the training logs, and the raw tracking results are provided in the model zoo

Acknowledgments

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil GoÅ› 1 Nov 24, 2021
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023