Fuse radar and camera for detection

Related tags

Deep LearningSAF-FCOS
Overview

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor

This project hosts the code for implementing the SAF-FCOS algorithm for object detection, as presented in our paper:

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor;
Shuo Chang, YiFan Zhang, Fan Zhang, Xiaotong Zhao, Sai Huang, ZhiYong Feng and Zhiqing Wei;
In: Sensors, 2019.

And the whole project is built upon FCOS, Below is FCOS license.

FCOS for non-commercial purposes

Copyright (c) 2019 the authors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The full paper is available at: https://www.mdpi.com/1424-8220/20/4/956.

You should known

Please read the FCOS project first FCOS-README.md

Installation

Please check INSTALL.md for installation instructions.

Generate Data

  1. Please download Full dataset (v1.0) of nuScenes dataset from the link. download

  2. Then, upload all download tar files to an ubuntu server, and uncompress all *.tar files in a specific folder:

mkdir ~/Data/nuScenes
mv AllDownloadTarFiles ~/Data/nuScenes
cd ~/Data/nuScenes
for f in *.tar; do tar -xvf "$f"; done
  1. Convert the radar pcd file as image:
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-mini
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-trainval
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-test
  1. Calculate the norm info of radar images:
python tools/nuscenes/extract_pc_image_norm_info_from_image.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval
  1. Generate 2D detections results for nuScenes CAM_FRONT images by 'FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x.pth',
    some of detection results should be refined by labelers to get tighter bboxes,
    and save the detection results as txt file in the folder ~/Data/nuScenes/fcos/CAM_FRONT:
    detection1 detection2 The detection results are saved as '0, 1479.519, 611.043, 1598.754, 849.447'. The first column is category, and the last stands for position.
    For convenience, we supply our generated 2D txt files in cloud drive and in folder data/fcos.zip.
    For users not in China, please download from google drive.
    For users in China, please download from baidu drive.

    链接:https://pan.baidu.com/s/11NNYpmBbs5sSqSsFxl-z7Q 
    提取码:6f1x 

    If you use our generated txt files, please:

mv fcos.zip ~/Data/nuScenes
unzip fcos.zip
  1. Generate 2D annotations in coco style for model training and test:
python tools/nuscenes/generate_2d_annotations_by_fcos.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval

Prepare training

The following command line will train fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
       --nproc_per_node=8 \
       --master_port=$((RANDOM + 10000)) \
       tools/train_net.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       DATALOADER.NUM_WORKERS 2 \
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x

Prepare Test

The following command line will test fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs:

python -m torch.distributed.launch \
       --nproc_per_node=8  
       --master_port=$((RANDOM + 10000)) \
       tools/test_epoch.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       --checkpoint-file tmp/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07/model_0010000.pth \ 
       OUTPUT_DIR tmp/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07

Citations

Please consider citing our paper and FOCS in your publications if the project helps your research. BibTeX reference is as follows.

@article{chang2020spatial,
  title={Spatial Attention fusion for obstacle detection using mmwave radar and vision sensor},
  author={Chang, Shuo and Zhang, Yifan and Zhang, Fan and Zhao, Xiaotong and Huang, Sai and Feng, Zhiyong and Wei, Zhiqing},
  journal={Sensors},
  volume={20},
  number={4},
  pages={956},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}
@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
Owner
ChangShuo
Machine learning. Visual Object Tracking. Signal Processing. Multi-Sensor Fusion
ChangShuo
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022