Fuse radar and camera for detection

Related tags

Deep LearningSAF-FCOS
Overview

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor

This project hosts the code for implementing the SAF-FCOS algorithm for object detection, as presented in our paper:

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor;
Shuo Chang, YiFan Zhang, Fan Zhang, Xiaotong Zhao, Sai Huang, ZhiYong Feng and Zhiqing Wei;
In: Sensors, 2019.

And the whole project is built upon FCOS, Below is FCOS license.

FCOS for non-commercial purposes

Copyright (c) 2019 the authors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The full paper is available at: https://www.mdpi.com/1424-8220/20/4/956.

You should known

Please read the FCOS project first FCOS-README.md

Installation

Please check INSTALL.md for installation instructions.

Generate Data

  1. Please download Full dataset (v1.0) of nuScenes dataset from the link. download

  2. Then, upload all download tar files to an ubuntu server, and uncompress all *.tar files in a specific folder:

mkdir ~/Data/nuScenes
mv AllDownloadTarFiles ~/Data/nuScenes
cd ~/Data/nuScenes
for f in *.tar; do tar -xvf "$f"; done
  1. Convert the radar pcd file as image:
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-mini
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-trainval
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-test
  1. Calculate the norm info of radar images:
python tools/nuscenes/extract_pc_image_norm_info_from_image.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval
  1. Generate 2D detections results for nuScenes CAM_FRONT images by 'FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x.pth',
    some of detection results should be refined by labelers to get tighter bboxes,
    and save the detection results as txt file in the folder ~/Data/nuScenes/fcos/CAM_FRONT:
    detection1 detection2 The detection results are saved as '0, 1479.519, 611.043, 1598.754, 849.447'. The first column is category, and the last stands for position.
    For convenience, we supply our generated 2D txt files in cloud drive and in folder data/fcos.zip.
    For users not in China, please download from google drive.
    For users in China, please download from baidu drive.

    链接:https://pan.baidu.com/s/11NNYpmBbs5sSqSsFxl-z7Q 
    提取码:6f1x 

    If you use our generated txt files, please:

mv fcos.zip ~/Data/nuScenes
unzip fcos.zip
  1. Generate 2D annotations in coco style for model training and test:
python tools/nuscenes/generate_2d_annotations_by_fcos.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval

Prepare training

The following command line will train fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
       --nproc_per_node=8 \
       --master_port=$((RANDOM + 10000)) \
       tools/train_net.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       DATALOADER.NUM_WORKERS 2 \
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x

Prepare Test

The following command line will test fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs:

python -m torch.distributed.launch \
       --nproc_per_node=8  
       --master_port=$((RANDOM + 10000)) \
       tools/test_epoch.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       --checkpoint-file tmp/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07/model_0010000.pth \ 
       OUTPUT_DIR tmp/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07

Citations

Please consider citing our paper and FOCS in your publications if the project helps your research. BibTeX reference is as follows.

@article{chang2020spatial,
  title={Spatial Attention fusion for obstacle detection using mmwave radar and vision sensor},
  author={Chang, Shuo and Zhang, Yifan and Zhang, Fan and Zhao, Xiaotong and Huang, Sai and Feng, Zhiyong and Wei, Zhiqing},
  journal={Sensors},
  volume={20},
  number={4},
  pages={956},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}
@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
Owner
ChangShuo
Machine learning. Visual Object Tracking. Signal Processing. Multi-Sensor Fusion
ChangShuo
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022