Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Overview

Learning Pixel-level Semantic Affinity with Image-level Supervision

This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead.

outline

Introduction

The code and trained models of:

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, Jiwoon Ahn and Suha Kwak, CVPR 2018 [Paper]

We have developed a framework based on AffinityNet to generate accurate segmentation labels of training images given their image-level class labels only. A segmentation network learned with our synthesized labels outperforms previous state-of-the-arts by large margins on the PASCAL VOC 2012.

*Our code was first implemented in Tensorflow at the time of CVPR 2018 submssion, and later we migrated to PyTorch. Some trivial details (optimizer, channel size, and etc.) have been changed.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@InProceedings{Ahn_2018_CVPR,
author = {Ahn, Jiwoon and Kwak, Suha},
title = {Learning Pixel-Level Semantic Affinity With Image-Level Supervision for Weakly Supervised Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Prerequisite

  • Tested on Ubuntu 16.04, with Python 3.5, PyTorch 0.4, Torchvision 0.2.1, CUDA 9.0, and 1x NVIDIA TITAN X (Pascal).
  • The PASCAL VOC 2012 development kit: You also need to specify the path ('voc12_root') of your downloaded dev kit.
  • (Optional) If you want to try with the VGG-16 based network, PyCaffe and VGG-16 ImageNet pretrained weights [vgg16_20M.caffemodel]
  • (Optional) If you want to try with the ResNet-38 based network, Mxnet and ResNet-38 pretrained weights [ilsvrc-cls_rna-a1_cls1000_ep-0001.params]

Usage

1. Train a classification network to get CAMs.

python3 train_cls.py --lr 0.1 --batch_size 16 --max_epoches 15 --crop_size 448 --network [network.vgg16_cls | network.resnet38_cls] --voc12_root [your_voc12_root_folder] --weights [your_weights_file] --wt_dec 5e-4

2. Generate labels for AffinityNet by applying dCRF on CAMs.

python3 infer_cls.py --infer_list voc12/train_aug.txt --voc12_root [your_voc12_root_folder] --network [network.vgg16_cls | network.resnet38_cls] --weights [your_weights_file] --out_cam [desired_folder] --out_la_crf [desired_folder] --out_ha_crf [desired_folder]

(Optional) Check the accuracy of CAMs.

python3 infer_cls.py --infer_list voc12/val.txt --voc12_root [your_voc12_root_folder] --network network.resnet38_cls --weights res38_cls.pth --out_cam_pred [desired_folder]

3. Train AffinityNet with the labels

python3 train_aff.py --lr 0.1 --batch_size 8 --max_epoches 8 --crop_size 448 --voc12_root [your_voc12_root_folder] --network [network.vgg16_aff | network.resnet38_aff] --weights [your_weights_file] --wt_dec 5e-4 --la_crf_dir [your_output_folder] --ha_crf_dir [your_output_folder]

4. Perform Random Walks on CAMs

python3 infer_aff.py --infer_list [voc12/val.txt | voc12/train.txt] --voc12_root [your_voc12_root_folder] --network [network.vgg16_aff | network.resnet38_aff] --weights [your_weights_file] --cam_dir [your_output_folder] --out_rw [desired_folder]

Results and Trained Models

Class Activation Map

Model Train (mIoU) Val (mIoU)
VGG-16 48.9 46.6 [Weights]
ResNet-38 47.7 47.2 [Weights]
ResNet-38 48.0 46.8 CVPR submission

Random Walk with AffinityNet

Model alpha Train (mIoU) Val (mIoU)
VGG-16 4/16/32 59.6 54.0 [Weights]
ResNet-38 4/16/32 61.0 60.2 [Weights]
ResNet-38 4/16/24 58.1 57.0 CVPR submission

*beta=8, gamma=5, t=256 for all settings

Owner
Jiwoon Ahn
Deep Learning Researcher
Jiwoon Ahn
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023