ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

Overview

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

This repository is the official implementation of the empirical research presented in the supplementary material of the paper, ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees.

Requirements

To install requirements:

pip install -r requirements.txt

Please install Python before running the above setup command. The code was tested on Python 3.8.10.

Create a folder to store all the models and results:

mkdir ckeckpoint

Training

To fully replicate the results below, train all the models by running the following two commands:

./train_cuda0.sh
./train_cuda1.sh

We used two separate scripts because we had two NVIDIA GPUs and we wanted to run two training processes for different models at the same time. If you have more GPUs or resources, you can submit multiple jobs and let them run in parallel.

To train a model with different seeds (initializations), run the command in the following form:

python main.py --data <dataset> --model <DNN_model> --mu <learning_rate>

The above command uses the default seed list. You can also specify your seeds like the following example:

python main.py --data CIFAR10 --model CIFAR10_BNResNEst_ResNet_110 --seed_list 8 9

Run this command to see how to customize your training or hyperparameters:

python main.py --help

Evaluation

To evaluate all trained models on benchmarks reported in the tables below, run:

./eval.sh

To evaluate a model, run:

python eval.py --data  <dataset> --model <DNN_model> --seed_list <seed>

Results

Image Classification on CIFAR-10

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 95.58% (11M) 94.47% (11M) 95.49% (11M) 95.29% (8.7M)
WRN-40-4 95.49% (9.0M) 94.64% (9.0M) 95.62% (9.0M) 95.48% (8.4M)
ResNet-110 94.33% (1.7M) 92.62% (1.7M) 94.47% (1.7M) 93.93% (1.7M)
ResNet-20 92.58% (0.27M) 90.98% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Image Classification on CIFAR-100

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 79.14% (11M) 75.42% (11M) 78.98% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.81% (9.0M) 78.69% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 74.24% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.49% (0.28M) 68.16% (0.27M)

BibTeX

@inproceedings{chen2021resnests,
  title={{ResNEsts} and {DenseNEsts}: Block-based {DNN} Models with Improved Representation Guarantees},
  author={Chen, Kuan-Lin and Lee, Ching-Hua and Garudadri, Harinath and Rao, Bhaskar D.},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
Kuan-Lin (Jason) Chen
Kuan-Lin (Jason) Chen
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022