You Only Look Once for Panopitic Driving Perception

Overview

You Only 👀 Once for Panoptic ​ 🚗 Perception

You Only Look at Once for Panoptic driving Perception

by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang 📧 School of EIC, HUST

( 📧 ) corresponding author.

arXiv technical report (arXiv 2108.11250)


中文文档

The Illustration of YOLOP

yolop

Contributions

  • We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the BDD100K dataset.

  • We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.

Results

PWC

Traffic Object Detection Result

Model Recall(%) mAP50(%) Speed(fps)
Multinet 81.3 60.2 8.6
DLT-Net 89.4 68.4 9.3
Faster R-CNN 77.2 55.6 5.3
YOLOv5s 86.8 77.2 82
YOLOP(ours) 89.2 76.5 41

Drivable Area Segmentation Result

Model mIOU(%) Speed(fps)
Multinet 71.6 8.6
DLT-Net 71.3 9.3
PSPNet 89.6 11.1
YOLOP(ours) 91.5 41

Lane Detection Result:

Model mIOU(%) IOU(%)
ENet 34.12 14.64
SCNN 35.79 15.84
ENet-SAD 36.56 16.02
YOLOP(ours) 70.50 26.20

Ablation Studies 1: End-to-end v.s. Step-by-step:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%)
ES-W 87.0 75.3 90.4 66.8 26.2
ED-W 87.3 76.0 91.6 71.2 26.1
ES-D-W 87.0 75.1 91.7 68.6 27.0
ED-S-W 87.5 76.1 91.6 68.0 26.8
End-to-end 89.2 76.5 91.5 70.5 26.2

Ablation Studies 2: Multi-task v.s. Single task:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%) Speed(ms/frame)
Det(only) 88.2 76.9 - - - 15.7
Da-Seg(only) - - 92.0 - - 14.8
Ll-Seg(only) - - - 79.6 27.9 14.8
Multitask 89.2 76.5 91.5 70.5 26.2 24.4

Notes:

  • The works we has use for reference including Multinet (paper,code),DLT-Net (paper),Faster R-CNN (paper,code),YOLOv5scode) ,PSPNet(paper,code) ,ENet(paper,code) SCNN(paper,code) SAD-ENet(paper,code). Thanks for their wonderful works.
  • In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.

Visualization

Traffic Object Detection Result

detect result

Drivable Area Segmentation Result

Lane Detection Result

Notes:

  • The visualization of lane detection result has been post processed by quadratic fitting.

Project Structure

├─inference
│ ├─images   # inference images
│ ├─output   # inference result
├─lib
│ ├─config/default   # configuration of training and validation
│ ├─core    
│ │ ├─activations.py   # activation function
│ │ ├─evaluate.py   # calculation of metric
│ │ ├─function.py   # training and validation of model
│ │ ├─general.py   #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py   # loss function
│ │ ├─postprocess.py   # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py   # Superclass dataset,general function
│ │ ├─bdd.py   # Subclass dataset,specific function
│ │ ├─hust.py   # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py 
│ │ ├─DemoDataset.py   # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py    # Setup and Configuration of model
│ │ ├─light.py    # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py   # calculation module
│ ├─utils
│ │ ├─augmentations.py    # data augumentation
│ │ ├─autoanchor.py   # auto anchor(k-means)
│ │ ├─split_dataset.py  # (Campus scene, unrelated to paper)
│ │ ├─utils.py  # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time  # Visualization, logging and model_save
├─tools
│ │ ├─demo.py    # demo(folder、camera)
│ │ ├─test.py    
│ │ ├─train.py    
├─toolkits
│ │ ├─deploy    # Deployment of model
│ │ ├─datapre    # Generation of gt(mask) for drivable area segmentation task
├─weights    # Pretraining model

Requirement

This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch

See requirements.txt for additional dependencies and version requirements.

pip install -r requirements.txt

Data preparation

Download

We recommend the dataset directory structure to be the following:

# The id represent the correspondence relation
├─dataset root
│ ├─images
│ │ ├─train
│ │ ├─val
│ ├─det_annotations
│ │ ├─train
│ │ ├─val
│ ├─da_seg_annotations
│ │ ├─train
│ │ ├─val
│ ├─ll_seg_annotations
│ │ ├─train
│ │ ├─val

Update the your dataset path in the ./lib/config/default.py.

Training

You can set the training configuration in the ./lib/config/default.py. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).

If you want try alternating optimization or train model for single task, please modify the corresponding configuration in ./lib/config/default.py to True. (As following, all configurations is False, which means training multiple tasks end to end).

# Alternating optimization
_C.TRAIN.SEG_ONLY = False           # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False           # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False       # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False       # Only train encoder and detection branch

# Single task 
_C.TRAIN.DRIVABLE_ONLY = False      # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False          # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False          # Only train detection task

Start training:

python tools/train.py

Evaluation

You can set the evaluation configuration in the ./lib/config/default.py. (Including: batch_size and threshold value for nms).

Start evaluating:

python tools/test.py --weights weights/End-to-end.pth

Demo Test

We provide two testing method.

Folder

You can store the image or video in --source, and then save the reasoning result to --save-dir

python tools/demo.py --source inference/images

Camera

If there are any camera connected to your computer, you can set the source as the camera number(The default is 0).

python tools/demo.py --source 0

Demonstration

input output

Deployment

Our model can reason in real-time on Jetson Tx2, with Zed Camera to capture image. We use TensorRT tool for speeding up. We provide code for deployment and reasoning of model in ./toolkits/deploy.

Segmentation Label(Mask) Generation

You can generate the label for drivable area segmentation task by running

python toolkits/datasetpre/gen_bdd_seglabel.py

Model Transfer

Before reasoning with TensorRT C++ API, you need to transfer the .pth file into binary file which can be read by C++.

python toolkits/deploy/gen_wts.py

After running the above command, you obtain a binary file named yolop.wts.

Running Inference

TensorRT needs an engine file for inference. Building an engine is time-consuming. It is convenient to save an engine file so that you can reuse it every time you run the inference. The process is integrated in main.cpp. It can determine whether to build an engine according to the existence of your engine file.

Third Parties Resource

Citation

If you find our paper and code useful for your research, please consider giving a star and citation 📝 :

@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022