Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

Overview

CLIP-GLaSS

Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

An in-browser demo is available here

Installation

Clone this repository

git clone https://github.com/galatolofederico/clip-glass && cd clip-glass

Create a virtual environment and install the requirements

virtualenv --python=python3.6 env && . ./env/bin/activate
pip install -r requirements.txt

Run CLIP-GLaSS

You can run CLIP-GLaSS with:

python run.py --config  --target 

Specifying and according to the following table:

Config Meaning Target Type
GPT2 Use GPT2 to solve the Image-to-Text task Image
DeepMindBigGAN512 Use DeepMind's BigGAN 512x512 to solve the Text-to-Image task Text
DeepMindBigGAN256 Use DeepMind's BigGAN 256x256 to solve the Text-to-Image task Text
StyleGAN2_ffhq_d Use StyleGAN2-ffhq to solve the Text-to-Image task Text
StyleGAN2_ffhq_nod Use StyleGAN2-ffhq without Discriminator to solve the Text-to-Image task Text
StyleGAN2_church_d Use StyleGAN2-church to solve the Text-to-Image task Text
StyleGAN2_church_nod Use StyleGAN2-church without Discriminator to solve the Text-to-Image task Text
StyleGAN2_car_d Use StyleGAN2-car to solve the Text-to-Image task Text
StyleGAN2_car_nod Use StyleGAN2-car without Discriminator to solve the Text-to-Image task Text

If you do not have downloaded the models weights you will be prompted to run ./download-weights.sh You will find the results in the folder ./tmp, a different output folder can be specified with --tmp-folder

Examples

python run.py --config StyleGAN2_ffhq_d --target "the face of a man with brown eyes and stubble beard"
python run.py --config GPT2 --target gpt2_images/dog.jpeg

Acknowledgments and licensing

This work heavily relies on the following amazing repositories and would have not been possible without them:

All their work can be shared under the terms of the respective original licenses.

All my original work (everything except the content of the folders clip, stylegan2 and gpt2) is released under the terms of the GNU/GPLv3 license. Coping, adapting e republishing it is not only consent but also encouraged.

Citing

If you want to cite use you can use this BibTeX

@article{galatolo_glass
,	author	= {Galatolo, Federico A and Cimino, Mario GCA and Vaglini, Gigliola}
,	title	= {Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search}
,	year	= {2021}
}

Contacts

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022