FreeSOLO for unsupervised instance segmentation, CVPR 2022

Overview

FreeSOLO: Learning to Segment Objects without Annotations

This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instance segmentation.

FreeSOLO: Learning to Segment Objects without Annotations,
Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz, Anima Anandkumar, Chunhua Shen, Jose M. Alvarez
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2022
arXiv preprint (arXiv 2202.12181)

pipeline

Visual Results

vis

Installation

Prerequisites

  • Linux or macOS with Python >= 3.6
  • PyTorch >= 1.5 and torchvision that matches the PyTorch installation.
  • scikit-image

Install PyTorch in Conda env

# create conda env
conda create -n detectron2 python=3.6
# activate the enviorment
conda activate detectron2
# install PyTorch >=1.5 with GPU
conda install pytorch torchvision -c pytorch

Build Detectron2 from Source

Follow the INSTALL.md to install Detectron2 (commit id 11528ce has been tested).

Datasets

Follow the datasets/README.md to set up the MS COCO dataset.

Pre-trained model

Download the DenseCL pre-trained model from here. Convert it to detectron2's format and put the converted model under "training_dir/pre-trained/DenseCL" directory.

python tools/convert-pretrain-to-detectron2.py {WEIGHT_FILE}.pth {WEIGHT_FILE}.pkl

Usage

Free Mask

Download the prepared free masks in json format from here. Put it under "datasets/coco/annotations" directory. Or, generate it by yourself:

bash inference_freemask.sh

Training

# train with free masks
bash train.sh

# generate pseudo labels
bash gen_pseudo_labels.sh

# self-train
bash train_pl.sh

Testing

Download the trained model from here.

bash test.sh {MODEL_PATH}

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@article{wang2022freesolo,
  title={{FreeSOLO}: Learning to Segment Objects without Annotations},
  author={Wang, Xinlong and Yu, Zhiding and De Mello, Shalini and Kautz, Jan and Anandkumar, Anima and Shen, Chunhua and Alvarez, Jose M},
  journal={arXiv preprint arXiv:2202.12181},
  year={2022}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022