Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

Overview

HAABSAStar

Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://github.com/ofwallaart/HAABSA and https://github.com/mtrusca/HAABSA_PLUS_PLUS.

All software is written in PYTHON3 (https://www.python.org/) and makes use of the TensorFlow framework (https://www.tensorflow.org/).

Installation Instructions (Windows):

Dowload required files and add them to data/externalData folder:

  1. Download ontology: https://github.com/KSchouten/Heracles/tree/master/src/main/resources/externalData
  2. Download SemEval2015 Datasets: http://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools
  3. Download SemEval2016 Dataset: http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
  4. Download Glove Embeddings: http://nlp.stanford.edu/data/glove.42B.300d.zip
  5. Download Stanford CoreNLP parser: https://nlp.stanford.edu/software/stanford-parser-full-2018-02-27.zip
  6. Download Stanford CoreNLP Language models: https://nlp.stanford.edu/software/stanford-english-corenlp-2018-02-27-models.jar

Setup Environment

  1. Install chocolatey (a package manager for Windows): https://chocolatey.org/install
  2. Open a command prompt.
  3. Install python3 by running the following command: code(choco install python) (http://docs.python-guide.org/en/latest/starting/install3/win/).
  4. Make sure that pip is installed and use pip to install the following packages: setuptools and virtualenv (http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtualenvironments-ref).
  5. Create a virtual environemnt in a desired location by running the following command: code(virtualenv ENV_NAME)
  6. Direct to the virtual environment source directory.
  7. Unzip the zip file of this GitHub repository in the virtual environment directrory.
  8. Activate the virtual environment by the following command: 'code(Scripts\activate.bat)`.
  9. Install the required packages from the requirements.txt file by running the following command: code(pip install -r requirements.txt).
  10. Install the required space language pack by running the following command: code(python -m spacy download en)

Note: the files BERT768embedding2015.txt and BERT768embedding2016.txt are too large for GitHub. These can be generated using getBERTusingColab.py.

Configure paths

The following scripts contain file paths to adapt to your computer (this is done by adding the path to you virtual environment before the filename. For example "/path/to/venv"+"data/programGeneratedData/GloVetraindata"): main_cross.py, main_hyper.py, config.py, HyperDataMaker.py, adversarial.py.

Run Software

  1. Configure one of the three main files to the required configuration (main.py, main_cross.py, main_hyper.py)
  2. Run the program from the command line by the following command: code(python PROGRAM_TO_RUN.py) (where PROGRAM_TO_RUN is main/main_cross/main_hyper)

Software explanation:

The environment contains the following main files that can be run: main.py, main_cross.py, main_hyper.py

  • main.py: program to run single in-sample and out-of-sample valdition runs. Each method can be activated by setting its corresponding boolean to True e.g. to run the Adversarial method set runAdversarial= True.

  • main_cross.py: similar to main.py but runs a 10-fold cross validation procedure for each method.

  • main_hyper.py: program that is able to do hyperparameter optimzation for a given space of hyperparamters for each method. To change a method change the objective and space parameters in the run_a_trial() function.

  • config.py: contains parameter configurations that can be changed such as: dataset_year, batch_size, iterations.

  • dataReader2016.py, loadData.py: files used to read in the raw data and transform them to the required formats to be used by one of the algorithms

  • lcrModel.py: Tensorflow implementation for the LCR-Rot algorithm

  • lcrModelAlt.py: Tensorflow implementation for the LCR-Rot-hop algorithm

  • lcrModelInverse.py: Tensorflow implementation for the LCR-Rot-inv algorithm

  • cabascModel.py: Tensorflow implementation for the CABASC algorithm

  • OntologyReasoner.py: PYTHON implementation for the ontology reasoner

  • svmModel.py: PYTHON implementation for a BoW model using a SVM.

  • adversarial.py: Tensorflow implementation of adversarial training for LCR-Rot-hop

  • att_layer.py, nn_layer.py, utils.py: programs that declare additional functions used by the machine learning algorithms.

Directory explanation:

The following directories are necessary for the virtual environment setup: __pycache, \Include, \Lib, \Scripts, \tcl, \venv

  • cross_results_2015: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • cross_results_2016: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • Results_Run_Adversarial: If WriteFile = True, a csv with accuracies per iteration is saved here
  • data:
    • externalData: Location for the external data required by the methods
    • programGeneratedData: Location for preprocessed data that is generated by the programs
  • hyper_results: Contains the stored results for hyperparameter optimzation for each method
  • results: temporary store location for the hyperopt package

Changed files with respect to https://github.com/mtrusca/HAABSA_PLUS_PLUS:

  • main.py
  • main_hyper.py
  • main_cross.py
  • config.py
  • adversarial.py (added)
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022