Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Overview

Temporal copying and local hallucination for video inpainting

This repository contains the implementation of my master's thesis "Temporal copying and local hallucination for video inpainting". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: The version published here might contain small differences with the thesis because of the refactoring.

About the data

The thesis uses three different datasets: GOT-10k for the background sequences, YouTube-VOS for realistic mask shapes and DAVIS to test the models with real masked sequences. Some pre-processing steps, which are not published in this repository, have been applied to the data. You can download the exact datasets used in the paper from this link.

The first step is to clone this repository, install its dependencies and other required system packages:

git clone https://github.com/davidalvarezdlt/master_thesis.git
cd master_thesis
pip install -r requirements.txt

apt-get update
apt-get install libturbojpeg ffmpeg libsm6 libxext6

Unzip the file downloaded from the previous link inside ./data. The resulting folder structure should look like this:

master_thesis/
    data/
        DAVIS-2017/
        GOT10k/
        YouTubeVOS/
    lightning_logs/
    master_thesis/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the Dense Flow Prediction Network (DFPN) model

In short, you can train the model by calling:

python -m master_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m master_thesis --help

For instance, if we want to train the model using 2 frames, with a batch size of 8 and using one GPUs, we would call:

python -m master_thesis --frames_n 2 --batch_size 8 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Training the Copy-and-Hallucinate Network (CHN) model

In this case, you will need to specify that you want to train the CHN model. To do so:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint>

Where --chn_aligner is the model used to align the frames (either cpn or dfpn) and --chn_aligner_checkpoint is the path to its checkpoint.

You can download the checkpoint of the CPN from its original repository (file named weight.pth).

Testing the Dense Flow Prediction Network (DFPN) model

You can align samples from the test split and store them in TensorBoard by calling:

python -m samplernn_pase --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Testing the Copy-and-Hallucinate Network (CHN) model

You can inpaint test sequences (they will be stored in a folder) using the three algorithms by calling:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint> --test --test_checkpoint <test_checkpoint>

Notice that now the value of --test_checkpoint must be a valid path to a CHN checkpoint, while --chn_aligner_checkpoint might be the path to a checkpoint of either CPN or DFPN.

Citation

If you find this thesis useful, please use the following citation:

@thesis{Alvarez2020,
    type = {Master's Thesis},
    author = {David Álvarez de la Torre},
    title = {Temporal copying and local hallucination for video onpainting},
    school = {ETH Zürich},
    year = 2020,
}
Owner
David Álvarez de la Torre
Founder of @lemonplot. Alumni of UPC and ETH.
David Álvarez de la Torre
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022