PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Related tags

Deep LearningPClean
Overview

PClean

Build Status

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Warning: This is a rapidly evolving research prototype.

PClean was created at the MIT Probabilistic Computing Project.

If you use PClean in your research, please cite the our 2021 AISTATS paper:

PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. Lew, A. K.; Agrawal, M.; Sontag, D.; and Mansinghka, V. K. (2021, March). In International Conference on Artificial Intelligence and Statistics (pp. 1927-1935). PMLR. (pdf)

Using PClean

To use PClean, create a Julia file with the following structure:

using PClean
using DataFrames: DataFrame
import CSV

# Load data
data = CSV.File(filepath) |> DataFrame

# Define PClean model
PClean.@model MyModel begin
    @class ClassName1 begin
        ...
    end

    ...
    
    @class ClassNameN begin
        ...
    end
end

# Align column names of CSV with variables in the model.
# Format is ColumnName CleanVariable DirtyVariable, or, if
# there is no corruption for a certain variable, one can omit
# the DirtyVariable.
query = @query MyModel.ClassNameN [
  HospitalName hosp.name             observed_hosp_name
  Condition    metric.condition.desc observed_condition
  ...
]

# Configure observed dataset
observations = [ObservedDataset(query, data)]

# Configuration
config = PClean.InferenceConfig(1, 2; use_mh_instead_of_pg=true)

# SMC initialization
state = initialize_trace(observations, config)

# Rejuvenation sweeps
run_inference!(state, config)

# Evaluate accuracy, if ground truth is available
ground_truth = CSV.File(filepath) |> CSV.DataFrame
results = evaluate_accuracy(data, ground_truth, state, query)

# Can print results.f1, results.precision, results.accuracy, etc.
println(results)

# Even without ground truth, can save the entire latent database to CSV files:
PClean.save_results(dir, dataset_name, state, observations)

Then, from this directory, run the Julia file.

JULIA_PROJECT=. julia my_file.jl

To learn to write a PClean model, see our paper, but note the surface syntax changes described below.

Differences from the paper

As a DSL embedded into Julia, our implementation of the PClean language has some differences, in terms of surface syntax, from the stand-alone syntax presented in our paper:

(1) Instead of latent class C ... end, we write @class C begin ... end.

(2) Instead of subproblem begin ... end, inference hints are given using ordinary Julia begin ... end blocks.

(3) Instead of parameter x ~ d(...), we use @learned x :: D{...}. The set of distributions D for parameters is somewhat restricted.

(4) Instead of x ~ d(...) preferring E, we write x ~ d(..., E).

(5) Instead of observe x as y, ... from C, write @query ModelName.C [x y; ...]. Clauses of the form x z y are also allowed, and tell PClean that the model variable C.z represents a clean version of x, whose observed (dirty) version is modeled as C.y. This is used when automatically reconstructing a clean, flat dataset.

The names of built-in distributions may also be different, e.g. AddTypos instead of typos, and ProportionsParameter instead of dirichlet.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022