Knowledge Management for Humans using Machine Learning & Tags

Overview

HyperTag

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your text documents (yes, even PDF's) and images. Instead of introducing proprietary file formats like other existing file organization tools, HyperTag just smoothly layers on top of your existing files without any fuss.

Objective Function: Minimize time between a thought and access to all relevant files.

Accompanying blog post: https://blog.neotree.uber.space/posts/hypertag-file-organization-made-for-humans

Table of Contents

Install

Available on PyPI

$ pip install hypertag (supports both CPU only & CUDA accelerated execution!)

Community

Join the HyperTag matrix chat room to stay up to date on the latest developments or to ask for help.

Overview

HyperTag offers a slick CLI but more importantly it creates a directory called HyperTagFS which is a file system based representation of your files and tags using symbolic links and directories.

Directory Import: Import your existing directory hierarchies using $ hypertag import path/to/directory. HyperTag converts it automatically into a tag hierarchy using metatagging.

Semantic Text & Image Search (Experimental): Search for images (jpg, png) and text documents (yes, even PDF's) content with a simple text query. Text search is powered by the awesome Sentence Transformers library. Text to image search is powered by OpenAI's CLIP model. Currently only English queries are supported.

HyperTag Daemon (Experimental): Monitors HyperTagFS and directories added to the auto import list for user changes (see section "Start HyperTag Daemon" below). Also spawns the DaemonService which speeds up semantic search significantly (warning: daemon process is a RAM hog with ~2GB usage).

Fuzzy Matching Queries: HyperTag uses fuzzy matching to minimize friction in the unlikely case of a typo.

File Type Groups: HyperTag automatically creates folders containing common files (e.g. Images: jpg, png, etc., Documents: txt, pdf, etc., Source Code: py, js, etc.), which can be found in HyperTagFS.

HyperTag Graph: Quickly get an overview of your HyperTag Graph! HyperTag visualizes the metatag graph on every change and saves it at HyperTagFS/hypertag-graph.pdf.

HyperTag Graph Example

CLI Functions

Import existing directory recursively

Import files with tags inferred from the existing directory hierarchy.

$ hypertag import path/to/directory

Add file/s or URL/s manually

$ hypertag add path/to/file https://github.com/SeanPedersen/HyperTag

Tag file/s (with values)

Manually tag files. Shortcut: $ hypertag t

$ hypertag tag humans/*.txt with human "Homo Sapiens"

Add a value to a file's tag:

$ hypertag tag sean.txt with name="Sean Pedersen"

Untag file/s

Manually remove tag/s from file/s.

$ hypertag untag humans/*.txt with human "Homo Sapiens"

Tag a tag

Metatag tag/s to create tag hierarchies. Shortcut: $ hypertag tt

$ hypertag metatag human with animal

Merge tags

Merge all associations (files & tags) of tag A into tag B.

$ hypertag merge human into "Homo Sapiens"

Query using Set Theory

Print file names of the resulting set matching the query. Queries are composed of tags (with values) and operands. Tags are fuzzy matched for convenience. Nesting is currently not supported, queries are evaluated from left to right.
Shortcut: $ hypertag q

Query with a value using a wildcard: $ hypertag query name="Sean*"
Print paths: $ hypertag query human --path
Print fuzzy matched tag: $ hypertag query man --verbose
Disable fuzzy matching: $ hypertag query human --fuzzy=0

Default operand is AND (intersection):
$ hypertag query human name="Sean*" is equivalent to $ hypertag query human and name="Sean*"

OR (union):
$ hypertag query human or "Homo Sapiens"

MINUS (difference):
$ hypertag query human minus "Homo Sapiens"

Index supported image and text files

Only indexed files can be searched.

$ hypertag index

To parse even unparseable PDF's, install tesseract: # pacman -S tesseract tesseract-data-eng

Index only image files: $ hypertag index --image
Index only text files: $ hypertag index --text

Semantic search for text files

A custom search algorithm combining semantic with token matching search. Print text file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag s

$ hypertag search "your important text query" --path --score --top_k=10

Semantic search for image files

Print image file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag si

Text to image: $ hypertag search_image "your image content description" --path --score --top_k=10

Image to image: $ hypertag search_image "path/to/image.jpg" --path --score --top_k=10

Start HyperTag Daemon

Start daemon process with triple functionality:

  • Watches HyperTagFS directory for user changes
    • Maps file (symlink) and directory deletions into tag / metatag removal/s
    • On directory creation: Interprets name as set theory tag query and automatically populates it with results
    • On directory creation in Search Images or Search Texts: Interprets name as semantic search query (add top_k=42 to limit result size) and automatically populates it with results
  • Watches directories on the auto import list for user changes:
    • Maps file changes (moves & renames) to DB
    • On file creation: Adds new file/s with inferred tag/s and auto-indexes it (if supported file format).
  • Spawns DaemonService to load and expose models used for semantic search, speeding it up significantly

$ hypertag daemon

Print all tags of file/s

$ hypertag tags filename1 filename2

Print all metatags of tag/s

$ hypertag metatags tag1 tag2

Print all tags

$ hypertag show

Print all files

Print names: $ hypertag show files

Print paths: $ hypertag show files --path

Visualize HyperTag Graph

Visualize the metatag graph hierarchy (saved at HyperTagFS root).

$ hypertag graph

Specify layout algorithm (default: fruchterman_reingold):

$ hypertag graph --layout=kamada_kawai

Generate HyperTagFS

Generate file system based representation of your files and tags using symbolic links and directories.

$ hypertag mount

Add directory to auto import list

Directories added to the auto import list will be monitored by the daemon for new files or changes.

$ hypertag add_auto_import_dir path/to/directory

Set HyperTagFS directory path

Default is the user's home directory.

$ hypertag set_hypertagfs_dir path/to/directory

Architecture

  • Python and it's vibrant open-source community power HyperTag
  • Many other awesome open-source projects make HyperTag possible (listed in pyproject.toml)
  • SQLite3 serves as the meta data storage engine (located at ~/.config/hypertag/hypertag.db)
  • Added URLs are saved in ~/.config/hypertag/web_pages for websites, others in ~/.config/hypertag/downloads
  • Symbolic links are used to create the HyperTagFS directory structure
  • Semantic Search: boosted using hnswlib
    • Text to text search is powered by the awesome DistilBERT
    • Text to image & image to image search is powered by OpenAI's impressive CLIP model

Development

  • Find prioritized issues here: TODO List
  • Pick an issue and comment how you plan to tackle it before starting out, to make sure no dev time is wasted.
  • Clone repo: $ git clone https://github.com/SeanPedersen/HyperTag.git
  • $ cd HyperTag/
  • Install Poetry
  • Install dependencies: $ poetry install
  • Activate virtual environment: $ poetry shell
  • Run all tests: $ pytest -v
  • Run formatter: $ black hypertag/
  • Run linter: $ flake8
  • Run type checking: $ mypy **/*.py
  • Run security checking: $ bandit --exclude tests/ -r .
  • Codacy: Dashboard
  • Run HyperTag: $ python -m hypertag

Inspiration

What is the point of HyperTag's existence?
HyperTag offers many unique features such as the import, semantic search, graphing and fuzzy matching functions that make it very convenient to use. All while HyperTag's code base staying relatively tiny at <2000 LOC compared to similar projects like TMSU (>10,000 LOC in Go) and SuperTag (>25,000 LOC in Rust), making it easy to hack on.

Owner
Ravn Tech, Inc.
Rapidly Emerging & Adapting Flock
Ravn Tech, Inc.
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023