Classification models 1D Zoo - Keras and TF.Keras

Overview

Classification models 1D Zoo - Keras and TF.Keras

This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models. It can be useful for classification of audio or some timeseries data.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-1D

Examples

Loading model:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(224*224, 2), weights='imagenet')

All possible nets for Classifiers.get() method: 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50', 'seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'mobilenet', 'mobilenetv2', 'inceptionresnetv2', 'inceptionv3', 'EfficientNetB0', 'EfficientNetB1', 'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5', 'EfficientNetB6', 'EfficientNetB7', 'EfficientNetV2B0', 'EfficientNetV2B1', 'EfficientNetV2B2', 'EfficientNetV2B3', 'EfficientNetV2S', 'EfficientNetV2M', 'EfficientNetV2L'

Convert imagenet weights (2D -> 1D)

Code to convert 2D imagenet weights to 1D variant is available here: convert_imagenet_weights_to_1D_models.py.

How to choose input shape

If initial 2D model had shape (224, 224, 3) then you can use shape (W, 3) where W ~= 224*224, so something like (224*224, 2) will be ok.

Additional features

  • Default pooling/stride size for 1D models set equal to 4 to match (2, 2) pooling for 2D nets. Kernel size by default is 9 to match (3, 3) kernels. You can change it for your needs using parameters stride_size and kernel_size. Example:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(
   input_shape=(224*224, 2),
   stride_size=6,
   kernel_size=3, 
   weights=None
)
  • You can set different pooling for each pooling block. For example you don't need pooling at first convolution. You can do it using tuple as value for stride_size:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet34')
model = ResNet18(
   input_shape=(65536, 2),
   stride_size=(1, 4, 4, 8, 8),
   kernel_size=9,
   weights='imagenet'
)
  • For some models like (resnet, resnext, senet, vgg16, vgg19, densenet) it's possible to change number of blocks/poolings. For example if you want to switch to pooling/stride = 2 but make more poolings overall. You can do it like that:
from classification_models_1D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet34')
model = ResNet18(
   input_shape=(224*224, 2),
   include_top=False,
   weights=None,
   stride_size=(2, 4, 4, 4, 2, 2, 2, 2),
   kernel_size=3,
   repetitions=(2, 2, 2, 2, 2, 2, 2),
   init_filters=16,
)

Note: Since number of filters grows 2 times, you can set initial number of filters with init_filters parameter.

Pretrained weights

Imagenet

Imagenet weights available for all models except ('inceptionresnetv2', 'inceptionv3'). They available only for kernel_size == 3 or kernel_size == 9 and 2 channel input (e.g. stereo sound). Weights were converted from 2D models to 1D variant. Weights can be loaded with any pooling scheme.

Related repositories

ToDo List

  • Create pretrained weights obtained on AudioSet
You might also like...
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Comments
  • drop out rate

    drop out rate

    Hi,

    I was wondering if this should have been =1?

    Best, Zakaria

    https://github.com/ZFTurbo/classification_models_1D/blob/c9bd60993f6cb2b75181aae126dc24966faa903a/classification_models_1D/models/efficientnet_v2.py#L904

    opened by louadi 0
Releases(v1.0.1)
Owner
Roman Solovyev
Roman Solovyev
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022