The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Overview

Cutoff: A Simple Data Augmentation Approach for Natural Language

This repository contains source code necessary to reproduce the results presented in the following paper:

This project is maintained by Dinghan Shen. Feel free to contact [email protected] for any relevant issues.

Natural Language Undertanding (e.g. GLUE tasks, etc.)

Prerequisite:

  • CUDA, cudnn
  • Python 3.7
  • PyTorch 1.4.0

Run

  1. Install Huggingface Transformers according to the instructions here: https://github.com/huggingface/transformers.

  2. Download the datasets from the GLUE benchmark:

python download_glue_data.py --data_dir glue_data --tasks all
  1. Fine-tune the RoBERTa-base or RoBERTa-large model with the Cutoff data augmentation strategies:
>>> chmod +x run_glue.sh
>>> ./run_glue.sh

Options: different settings and hyperparameters can be selected and specified in the run_glue.sh script:

  • do_aug: whether augmented examples are used for training.
  • aug_type: the specific strategy to synthesize Cutoff samples, which can be chosen from: 'span_cutoff', 'token_cutoff' and 'dim_cutoff'.
  • aug_cutoff_ratio: the ratio corresponding to the span length, token number or number of dimensions to be cut.
  • aug_ce_loss: the coefficient for the cross-entropy loss over the cutoff examples.
  • aug_js_loss: the coefficient for the Jensen-Shannon (JS) Divergence consistency loss over the cutoff examples.
  • TASK_NAME: the downstream GLUE task for fine-tuning.
  • model_name_or_path: the pre-trained for initialization (both RoBERTa-base or RoBERTa-large models are supported).
  • output_dir: the folder results being saved to.

Natural Language Generation (e.g. Translation, etc.)

Please refer to Neural Machine Translation with Data Augmentation for more details

IWSLT'14 German to English (Transformers)

Task Setting Approach BLEU
iwslt14 de-en transformer-small w/o cutoff 36.2
iwslt14 de-en transformer-small w/ cutoff 37.6

WMT'14 English to German (Transformers)

Task Setting Approach BLEU
wmt14 en-de transformer-base w/o cutoff 28.6
wmt14 en-de transformer-base w/ cutoff 29.1
wmt14 en-de transformer-big w/o cutoff 29.5
wmt14 en-de transformer-big w/ cutoff 30.3

Citation

Please cite our paper in your publications if it helps your research:

@article{shen2020simple,
  title={A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation},
  author={Shen, Dinghan and Zheng, Mingzhi and Shen, Yelong and Qu, Yanru and Chen, Weizhu},
  journal={arXiv preprint arXiv:2009.13818},
  year={2020}
}
Owner
Dinghan Shen
Natural Language Processing, Deep Learning
Dinghan Shen
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022