PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Overview

Stochastic CSLR

This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Quick Start

1. Installation

pip install git+https://github.com/zheniu/stochastic-cslr

Also, you need to install sclite for evaluation. Take a look at step 2 for instructions.

2. Prepare the dataset

  • Download the RWTH-PHOENIX-2014 dataset here.
  • Unzip it and obtain the path to phoenix-2014-multisigner/ folder for later use.
  • Install sclite for evaluation. Check phoenix-2014-multisigner/evaluation/NIST-sclite_sctk-2.4.0-20091110-0958.tar.bz2 for detail.
  • After installing sclite, put it in your PATH.

3. Run a quick test

You can use the script quick_test.py for a quick test.

python3 quick_test.py --data-root your_path_to/phoenix-2014-multisigner

By specifying the model type --model sfl/dfl, the data split --split dev/test, whether to use a language model--use-lm, you can get the following results:

Model WER (dev) sub/del/ins (dev) WER (test) sub/del/ins (test)
DFL 27.1 12.7/7.4/7.0 27.7 13.8/7.3/6.6
SFL 26.2 12.7/6.9/6.7 26.6 13.7/6.5/6.4
DFL + LM 25.6 11.5/9.2/4.9 26.4 12.4/9.3/4.7
SFL + LM 24.3 11.4/8.5/4.4 25.3 12.4/8.5/4.3

Note that these results are slightly different from the paper as a different random seed is used.

You may also take a look at quick_test.py as it shows how to use the pretrained models.

4. Train your own model

The configuration files for deterministic and stochastic fine-grained labeling are put under config/. The training script is based on a PyTorch experiment runner torchzq, which automatically reads the hyperparameters in the YAML file and passes them to stochastic_cslr/runner.py.

Before running, change the data_root in the YAML configurations to phoenix-2014-multisigner/ first.

Train (for instance, dfl):

tzq config/dfl-fp16.yml train

Test the trained model

tzq config/dfl-fp16.yml test

Citation

You may cite this work by:

@inproceedings{niu2020stochastic,
  title={Stochastic Fine-Grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition},
  author={Niu, Zhe and Mak, Brian},
  booktitle={European Conference on Computer Vision},
  pages={172--186},
  year={2020},
  organization={Springer}
}
Owner
Zhe Niu
PhD Candidate @ CSE, HKUST
Zhe Niu
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022