The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Overview

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP)

The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.arxiv

News

We add the implementation of our project Causal-STGAT, where we apply our CausalHTP method to the baseline backbone network STGAT. The code of Causal-STGCNN is coming soon.

Introduction

Most trajectory prediction methods concentrate on modeling the environment interactions and aggregate these interaction clues with history behavior clues for trajectory prediction. However, there are heavy biases in the between training and deployment environment interactions. The motivation of this project is to mitigate the negative effects of the inherent biases. We propose a counterfactual analysis method to alleviate the overdependence of environment bias and highlight the trajectory clues itself. This counterfactual analysis method is a plug-and-play module which can be easily applied to any baseline predictor, and consistently improves the performance on many human trajectory prediction benchmarks.

image Figure 1. Training process of our counterfactual analysis method. We apply the counterfactual intervention by replacing the features of past trajectory with the counterfactual features such as uniform rectilinear motion, mean trajectory, or random trajectory. The counterfactual prediction denotes the biased affect from environment confounder. To alleviate the negative effect of environment bias, we subtract the counterfactual prediction from original prediction as the final causal prediction.

Requirements

  • Python 3.6+
  • PyTorch 1.3

To build all the dependency, you can follow the instruction below.

pip install -r requirements.txt

Dataset

The datasets can be found in datasets/, we provide 5 scenes including eth, hotel, univ, zara1, and zara2.

Training and Evaluation

You can train the model for eth dataset as

python train.py --dataset_name eth

To evaluate the trained model, you can use

python evaluate_model.py --dataset_name eth --resume your_checkpoint.pth.tar

The pre-trained models can be found in pretrain/

Result

Results (ADE/FDE) ETH HOTEL ZARA1 ZARA2 UNIV AVG
STGAT 0.73/1.39 0.38/0.72 0.35/0.69 0.32/0.64 0.57/1.22 0.47/0.93
Causal-STGAT 0.60/0.98 0.30/0.54 0.32/0.64 0.28/0.58 0.52/1.10 0.40/0.77

image Figure 2. Visualization examples of our Causal-STGAT method and baseline Social-STGAT method in the different scenes in the both ETH and UCY datasets. The comparisons quantitatively demonstrate the effectiveness of our counterfactual analysis on the RNN-based baselines.

Citation

Part of the code comes from STGAT. If you find this code useful then please also cite their paper.

Please use the citation provided below if this repo is useful to your research:

@inproceedings{CausalHTP,
  title={Human Trajectory Prediction via Counterfactual Analysis},
  author={Chen, Guangyi and Li, Junlong and Lu, Jiwen and Zhou, Jie},
  booktitle={ICCV},
  year={2021}
}
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022